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Abstract—The utilization of high-resolution electroluminescence
(EL) images for defect inspection in photovoltaic modules has
gained significant popularity. However, there are limited works
on the imbalance problem in the EL images of the photovoltaic
modules, specifically that the number of defective images is sub-
stantially less than the number of normal images. To address the
above problem, a fast defective EL. image generation method is
proposed in this article. To accurately extract the defective region,
a normal image, which is the most similar to the defective image,
needs to be identified. First, an image type classification network
is proposed to recognize the normal images with the same type
(monocrystalline or polycrystalline) as the defective image. Then,
the cosine similarity is further employed to identify the normal
image that is most similar to the defective image. After that, the de-
fective template is acquired by comparing the defective image with
the identified similar normal image. To quickly generate diverse
and rich defective EL images, effective data augmentation methods
for EL images are exploited and applied to the defective template.
Specifically, small-scale rotation and Gaussian blurring are first
introduced to augment the EL images. Finally, the augmented
defective templates are merged with any different normal images to
produce a large amount of new defective images. The experimental
comparison of the proposed defective image generation method
with oversampling and data augmentation, which are commonly
used for data imbalance, demonstrates that our proposed method
can provide richer information and thus outperform other methods
with a big gap.

Index Terms—Data imbalance, deep learning, defect extraction,
electroluminescence (EL) image, photovoltaic (PV) modules.

1. INTRODUCTION

SING photovoltaic (PV) technology is one of the most
U straightforward methods for transforming solar energy
into electricity power. In recent decades, the worldwide market
of PV technology has shown remarkable expansion. The global
PV cumulative capacity grew to 1.6 TW in 2023, up from 1.2
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TW in 2022 [1]. Solar cells are critical and delicate modules
that need utmost caution to safeguard them against potential
harm [2]. The occurrence of failures might potentially result in
a substantial decrease in the efficiency of PV modules [3].

Electroluminescence (EL) imaging is widely used to inspect
defects in solar cells. As a nondestructive and contactless ap-
proach, EL imaging offers high-resolution images, thus facil-
itating the visualization of different defects [4]. Tsai et al.
[5] used Fourier image reconstruction to inspect defects in
EL images of solar cells. However, this method struggles to
inspect complex-shaped defects due to its reliance on shape
assumptions. Anwar and Abdullah [6] proposed an algorithm
combining anisotropic diffusion filtering and shape analysis to
identify defective regions. While it performs well in inspecting
microdefects, it ignores some other types of defects.

Machine learning provides an automated, cost-effective, and
time-efficient solution to EL defect inspection [7], [8]. Su et al.
[9] conducted a comparative analysis of support vector ma-
chine and convolutional neural network (CNN) concerning EL
defect inspection. The CNN approach achieves high accuracy
but exhibits low efficiency compared to traditional methods.
Akram et al. [10] reached a harmonious equilibrium between
precision and effectiveness successfully in the classification
of PV defects using a lightweight CNN. Hassan and Dhimish
[11], [12] proposed a novel approach to automated PV defect
inspection by developing four different deep learning models
and a CNN architecture, which combines mean pooling and max
pooling to capture distinctive features of defects on solar cells.
Fioresi et al. [13] demonstrated a sophisticated deep learning
model that individually classifies and localizes four different
combined defect categories.

Although there have been many studies on defect inspection
of solar cells, few studies have considered the issue of data
imbalance. For solar cells, there is a relatively lower quantity
of defective images compared to normal images, thus leading
to the data imbalance. Using an imbalanced dataset for model
training often yields suboptimal training outcomes, since the
results tend to exhibit bias toward the majority class while the
minority samples are either undiscovered, ignored, or considered
as noise [14]. Misclassifying defective solar cells as nondefec-
tive ones can cause abnormal PV module operation, significantly
impacting output efficiency. Consequently, the need to achieve
effective defect inspection under an imbalanced dataset becomes
a pressing concern.

Oversampling and data augmentation are effective techniques
to expand the dataset in the field of EL defect inspection,
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Process of generating new defective images from the most similar image pairs. The most similar normal image to the input defective image is identified

to obtain the defective template, which is combined with a random normal image after data augmentation to create a new defective image.

alleviating the issue of data imbalance. Akram et al. [15] com-
pared three models for the identification of solar cell defects
and expanded the original data by four times through rotation
and flipping. Zhang et al. [16] trained a deep adoption network
using a labeled monocrystalline dataset consisting of 44 pho-
tos, but with augmentations, it expanded to over 2000 images.
Chen et al. [17] developed a rapid automatic computer vision
pipeline to identify defects in EL images and used oversampling
to process the training set. Demirci et al. [18] proposed a two-
stage procedure for the detection of various EL-based solar cell
defects and employed a variety of data augmentation approaches
to pay special attention to the defective classes. Su et al. [19]
used data augmentation before and during the training stage to
evaluate multiple EL defect inspection methods.

Although some works have considered the lack of defective
images, few of them focus on explicitly addressing the data
imbalance problem. To solve the data imbalance problem, a
defective EL image generation method is proposed in this article
based on defective region extraction. Experiments demonstrate
that our method outperforms classic oversampling and data
augmentation, and better copes with the impact of EL data
imbalance. The contributions of this work are as follows.

1) An efficient defective EL image generation approach is
exploited. First, the most similar normal and defective
image pairs are identified based on a proposed image
type classification network and cosine similarity. After
comparing the image pairs, the defective templates are
acquired. Finally, the augmented defective templates are
combined with any different normal images to create a
large set of new defective images.

2) The effective data augmentation techniques for EL images
are exploited by experiments. We first introduce Gaussian
blur and small-scale rotation according to the noise and
the position of defects to exploit more useful information
about defects.

3) The experimental results demonstrate the validity of our
method. Specifically, the Balanced Accuracy/Recall/F1
score/G-mean improves by 2.48%/3.36%/2.37%/1.47%,
respectively, compared to the optimal results of the
commonly used data augmentation and oversampling
methods.

The rest of this article is organized as follows. The proposed
method and details are described in Section II. The results
obtained from the experiments are reported and discussed in
Section III. Finally, Section IV concludes this article with the
scope of future work.

II. METHODOLOGY

To address the data imbalance problem, a novel image gen-
eration method is proposed in this article through automatically
extracting defective regions as the defective template. To accu-
rately extract the defective region, a normal image, which is the
most similar to the defective image, needs to be identified since
the defective region is computed as the difference between the
defective image and the normal image. After exploiting effective
data augmentation operations for EL images, the augmented
defective templates are merged with any different normal images
to efficiently generate a large amount of new defective EL
images. The whole process of generating new defective images
from the most similar image pairs is shown in Fig. 1.

A. Similar Normal Image Identification

According to the observation, the backgrounds of both defec-
tive images and normal images contain the same elements, such
as horizontal gratings, flocculent noises, etc. Thus, defective
regions are extracted as the defective template by comparing
similar defective and normal image pairs. It is essential to iden-
tify the normal image that is most similar to the defective image.
However, manually identifying similar normal images poses
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TABLEI The method for acquiring the most similar defective and

PARAMETERS OF LAYERS OF THE PROPOSED IMAGE TYPE CLASSIFICATION normal imaee pairs is illustrated in Fie. 2. The proposed image
NETWORK . g P g_’ ’ prop . g

type classification network first classifies the normal images

Layer type Parameters setting and the input defective images to determine their type. Based

Image input [300 x 300 x 3] scaled to the range [0,1]
Convolution 4 (3 x 3) filers with stride 1, padding 1 [ReLu]
Batch normalization

Max pooling 2 x 2 filter with stride 2

Convolution 8 (3 x 3) filers with stride 1, padding 1 [ReLu]
Batch normalization

Max pooling 2 x 2 filter with stride 2

Convolution 16 (3 x 3) filers with stride 1, padding 1 [ReLu]
Batch normalization

Max pooling 2 x 2 filter with stride 2

Convolution 32 (3 x 3) filers with stride 1, padding 1 [ReLu]
Batch normalization

Max pooling 2 x 2 filter with stride 2

Convolution 32 (3 x 3) filers with stride 1, padding 1 [ReLu]
Batch normalization

Max pooling 2 x 2 filter with stride 2

Adaptive average pooling
Fully connected (FC)
Fully connected (FC)
Output

output size 7 x 7

256 [ReLu, 0.5 dropout]
256 [ReLu, 0.5 dropout]
2 (softmax classifier)

significant challenges. In addition, EL images for polycrystalline
silicon solar cells often exhibit substantial flocculent noises in
the backgrounds, making it scarcely possible for the human eyes
to discern similarities between images.

An automatic approach is proposed to identify similar im-
ages. It is evident that silicon solar cells of the same type
(monocrystalline or polycrystalline) exhibit a higher degree of
similarity compared to cells of different types. Therefore, an
image type classification network is proposed to recognize the
image type, which consists of a feature extraction block, an
average pooling layer, and a classification head. The architecture
of the classification network consists of convolutional layers,
pooling layers, batch normalization layers, rectified linear unit
(ReLU) function, max pooling layers, fully connected layers,
and loss.

In this article, we conduct experiments on an open-sourced
EL photovoltaic (ELPV) module cell dataset, which is proposed
by Deitsch et al. [7]. Greyscale EL images with dimensions
of 300 x 300 x 3 from the ELPV dataset are input to the image
type classification network. The features of images are extracted
by five feature extraction blocks, which consist of convolutional
layer, batch normalization, and max pooling layer. The structure
of each feature extraction block is the same while the number of
filters is different, which allows the network to gradually extract
more detailed features of the images. Batch normalization [20]
allows the model to learn optimal input scaling and mean for each
layer. Each feature is standardized in a mini-batch by subtracting
the mean and dividing the difference by the standard deviation.
The pooling layer can increase translation invariance and avoid
overfitting.

The classifier consists of three fully connected layers. The
dropout rate for the fully connected layer is set to 0.5.
Dropout [21] causes dropping out of units randomly in neural
networks, which makes the model more effective in handling
complex data and reduces the risk of overfitting. After passing
through all the layers, the pixel values are transformed into class
scores to identify the type of the input EL image. The details of
these layers and hyperparameters are listed in Table 1.

on the result of classification, normal images with the same
type of defective image are identified. After calculating the
cosine similarity between the defective image and each normal
image of the same type, the normal image with the highest
cosine similarity to the defective image is considered as the
most similar image. Fig. 3 illustrates examples of the most
similar defective and normal image pairs, where Fig. 3(a) and
(c) presents defective silicon solar cells, and Fig. 3(b) and (d)
presents their corresponding most similar normal cells. It can
be seen that our similar image identification method effectively
identifies defective and normal image pairs with the highest
degree of similarity.

B. Defective Image Generation

Image subtraction and absolute difference are useful in detect-
ing disparities between two images. The inclusion of pixel value
changes at the edge of the defect region in the image subtraction
procedure ensures that the resulting defective template exhibits a
more authentic and seamless pixel value transition at the border
of defect.

The input defective image, the normal image that is most
similar to the defective image, and the defective template ac-
quired by subtraction are denoted as img_d, img_m, and temp,
respectively. The acquisition of the defective template is math-
ematically expressed as follows:

temp = |[img_d — img_m)| . @)

Fig. 4 displays several instances of defective templates. The
white area of the defective region is visible against the black
background. In Fig. 4, a microcrack is a crack that does not
influence the current flow over the crack. A fragement is a crack
that influences the current flow to the cell interconnect ribbon of
the cell. Printing errors are identical to finger interruptions on
some cells in a PV module or gridfinger interruptions caused by
soldering [22]. It is possible to extract various types of defective
regions, including cracks, that are difficult to identify.

To get a richer amount of data, data augmentation is used to
augment the defective template. The process of generating new
defective images is described as follows:

img_d* = img_n — temp”. 2)

We propose an image type classification network to obtain
normal images of the same type as the input defective image. The
defective image img_d is compared to a set of normal images
with the same image type using cosine similarity to find the
most similar image img_m. The image subtraction between
the similar image pairs derives the defective template temp.
After data augmentation for temp, any normal image img_n
is randomly selected for image fusion, hence generating a large
number of new defective images img_d*. The overall procedure
for defective image generation is outlined in Algorithm 1.
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determined by the image type classification network. After calculating the cosine similarity between the input defective image and each normal image of the same
type, the normal image with the highest cosine similarity to the defective image is considered as the most similar image.

(C))

Fig. 3.  Examples of most similar defective and normal image pairs. (a) and
(c) Defective silicon solar cells. (b) and (d) Corresponding most similar normal
cells.

(a) (b) ©

d) (e) (H
Fig. 4. Examples of templates. (a)—(c) Monocrystalline silicon solar cells.

(d)—(f) Polycrystalline silicon solar cells. The defects are marked with rectan-
gular boxes.

III. EXPERIMENTS

Experiments are conducted to compare the proposed defective
EL image generation method with commonly used oversampling
and data augmentation methods on a public imbalanced dataset,
i.e., ELPV dataset [7] to demonstrate the effectiveness of the
proposed method. It is worth noting that all the experimental
results were obtained by running seven times and then taking the
average to ensure the authenticity and reliability of the results.
Some basic parameters we used in the experiments are fixed,
where the initial learning rate is 0.01, momentum is 0.9, weight
decay is Se-4, the default loss function is the cross-entropy loss

Algorithm 1: Defective EL Image Generation Method for
Data Imbalance in PV Modules Defect Inspection.

Input:A defective EL image img_d;

(1) Propose an image type classification network to

obtain normal images of the same type as the

defective image.

Calculate cosine similarity to find the most similar

normal image img_m to the defective image.

Use image synthesis in (1) to achieve a defective

template temp.

Exploit data augmentation for the defective template,

denoted as temp”. We first introduce Gaussian blur

and small-scale rotation to the EL data set which can

provide richer information to the model.

Merge the defective template temnp” with any

random normal image ¢mg_n using (2) to obtain a

large number of new defective images tmg_d*.

Output: A large number of newly generated defective
images img_d*;

(@)
3)
“4)

®)

function, and the optimizer is stochastic gradient descent. In
the experiment, a pretrained ResNet50 [23] model without data
augmentation to inspect the defect is used as the baseline.

A. Dataset

The ELPV dataset contains 2624 EL images of solar cells with
a resolution of 300 x 300 pixels, extracted from 44 different
PV modules, 18 of which are of the monocrystalline type and
26 of which are of the polycrystalline type. The number of
normal images is approximately twice the number of defec-
tive ones. Some examples of defective images are shown in
Fig. 5.
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Fig.5. Examples of defective images in the ELPV dataset. (a)—(c) Monocrys-
talline silicon solar cells. (d)—(f) Polycrystalline silicon solar cells.

B. Evaluation Metrics

Accuracy and error rate are the most frequently used metrics
when evaluating classification results [24]. However, both of
them are insufficient when dealing with imbalanced dataset,
since the resulting value is dominated by the majority group.
Therefore, we adopt evaluation metrics commonly used in im-
balanced dataset in our experiment, i.e., Balanced Accuracy,
Recall, F1 score, and G-mean.

The Balanced Accuracy calculates a more sensitive metric for
minority group, which is defined as the arithmetic mean of the
proportion of correct predictions for each class. The Balanced
Accuracy is calculated as true positive rate (TPR) + true negative
rate (TNR) /2[25]. TPR, whichis also called as Recall, measures
the percentage of the positive group that is correctly labeled
as positive by the model. TPR is calculated as TP/(TP + FN).
TNR measures the percentage of negative group that is correctly
predicted to be negative. TNR is calculated as TN/(TN + FP).
TP stands for true positive, FP stands for false positive, FN stands
for false negative, and TN stands for true negative.

F1 score combines Precision and Recall, which is calculated
as 2 x Recall x Precision/(Recall 4 Precision) [26]. Precision
is calculated as TP/(TP + FP). The G-mean measures perfor-
mance by the square root of the product of TPR and TNR, which
is calculated as v/ TPR x TNR [27].

C. Performance Comparison

Data augmentation employs methods that are experimentally
proven effective for EL images, including horizon flipping,
vertical flipping, rotations, as well as Gaussian blur with a blur
radius of 1 for the training set. Oversampling randomly samples
data from the training set to balance the number of defective and
normal images. The method, abbreviated as “aug + oversample”
for simplicity, not only employs data augmentation methods but
also samples defective images from the ELPV dataset. To ensure
fair and valid experimental results, the same number of images
is used in the experiments of the oversampling method, the aug
+ oversample method, and our proposed method. The results of
different methods are shown in Table II.

TABLE II
PERFORMANCE COMPARISON OF PROPOSED METHOD, DATA AUGMENTATION,
OVERSAMPLING, AND AUG + OVERSAMPLE METHOD

Operation B_accuracy  Recall Fl1 score  G-mean
Baseline 0.8527 0.7409 0.8144 0.8453
Data augmentation 0.8764 0.7999 0.8412 0.8729
Oversampling 0.8766 0.8291 0.8308 0.8753
Aug + oversample 0.8869 0.8263 0.8505 0.8646
Proposed approach 0.9014 0.8627 0.8649 0.8900

The aug + oversample method not only employs data augmentation methods but also samples
defective images from ELPV Dataset. The best results are in bold and the second best are in
underlined.

Fragment

Fig. 6. New defective images generated correspondingly by the defective
templates in Fig. 4. The defects are marked with rectangular boxes. (a)—(c)
Monocrystalline silicon solar cells. (d)—(f) Polycrystalline silicon solar cells.

In Table 1II, all the metrics indicate that the proposed method
has the best overall performance under the imbalanced dataset.
In terms of Balance Accuracy and G-mean, our method out-
performs oversampling by 2.48% and 1.47%, respectively. On
Recall, our method is well above baseline and data augmentation
by at least 6% and outperforms oversampling by 3.36%. The aug
+ oversample method achieves commendable results in terms of
Balanced Accuracy and F1 score. However, the metrics of Recall
and G-mean do not exhibit superior performance compared to
the application of oversampling methods alone. This could be
attributed to the fact that the concurrent application of over-
sampling and data augmentation to the original ELPV dataset
may lead to the proliferation of redundant information, which
could potentially diminish the defect inspection performance.
The higher Recall indicates that our method can miss fewer
defective samples. What is more, the F1 score is also optimal
at this time, which indicates that our method can also maintain
a better balance between Precision and Recall, thus avoiding
skewed prediction.

D. Visual Effect

Fig. 6 displays six defective image samples generated by the
proposed method, each corresponding to a defective template in
Fig. 4. Fig. 6(a)—(c) presents the newly generated EL images of
monocrystalline silicon solar cells, while Fig. 6(d)—(f) presents
the newly generated EL images of polycrystalline silicon solar
cells. It is evident that the generated defective images closely

Authorized licensed use limited to: Southeast University. Downloaded on September 22,2025 at 12:13:07 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TABLE III
RESULTS OF EL DEFECT INSPECTION FOR ABLATING CORE COMPONENTS OF
THE PROPOSED APPROACH

IEEE JOURNAL OF PHOTOVOLTAICS

TABLE IV
DATA AUGMENTATION EFFECT OF PV CELL IMAGE

Augmentation operation ~ B_accuracy = Recall ~ Fl score  G-mean

Operation B_accuracy  Recall Fl score  G-mean Baseline 0.8527 0.7409 0.8144 0.8453

No augmentation Horizon flip 0.8751 0.7997 0.8378 0.8718

and classification 08726 07941 08351  0.8680 Vertical flip 08692  0.7892 08301  0.8655

With augmentation 0.8786 0.8039 0.8432 0.8743 Contrast 0.8460 0.7276 0.8057 0.8733

With classification 0.8929 0.8480  0.8543 0.8816 Blur (radius = 1) 0.8602 0.7759  0.8172 0.8560

Proposed approach 0.9014 0.8627  0.8649 0.8900 Blur (radius = 2) 0.8433 0.7479  0.7940 0.8379

Scale 0.8565 0.7591 0.8159 0.8510

Translate 0.8565 0.7591 0.8159 0.8510

. . Rotation_ 3 0.8603 0.7640 0.8213 0.8549

resemble the real EL images and clearly show the defective re- Rotation_90 0.8630 07661  0.8265 0.8577

gions. Moreover, the newly generated images effectively present Eomtion_é 38 84323 8-;;23 8-2%22 8-22%
. . . otation_ . . B .

defects that are difficult to identify and truly present the floc- Combination 0.8764 07999 08412 08729

culent noises on the EL images of polycrystalline silicon. In
addition, our method is computationally lightweight, requiring
merely 8 min of processing time on a standard CPU to produce
1000 high-quality defective EL images. The defective image
generation process is offline, thereby circumventing the need
for computational expenditure during the stage of training and
testing.

E. Ablation Experiments

Study of the proposed defective EL. image generation ap-
proach: The core operations of our method are image classi-
fication performed by the proposed image type classification
network and data augmentation of the defective template, of
which experiments are conducted to illustrate the effectiveness.
The results are shown in Table III.

Based on the proposed defective EL image generation ap-
proach, the template augmentation and image type classification
network are all removed to get a primary algorithm, which is
indicated as no augmentation and classification. The secondary
algorithms only combine the template augmentation or image
type classification network and are indicated as with augmenta-
tion and with classification. The final algorithm is indicated as
proposed approach for clarity.

According to all metrics, the final algorithm has the best over-
all performance with the help of an image type classification net-
work and data augmentation. The secondary algorithms, which
only combine the data augmentation or image type classification
network, have the median performances. The primary algorithm
without data augmentation and a classification network has the
worst performance.

We also evaluate the performance of the image type classifi-
cation network, and experiments show that the accuracy of the
proposed image type classification network can achieve almost
100%. The experiment results indicate that the proposed image
type classification network can identify the image type perfectly,
thus contributing to the template generation.

Study of effective data augmentation methods: According
to our observation, the defects in the EL image can be anywhere
with any orientation. After flipping or rotating, the defects in
the image can appear in different positions of the image, thus
effectively improving the diversity of defective EL images.
Small-scale rotations are first introduced to the EL dataset in
this research, which can make the defects in the image move in
a small range, thus enhancing the robustness of the model and

The best results are in bold and the second best are in underlined.

providing new information for model training. We also introduce
a Gaussian blur, which can reduce image noise, as there are
flocculent noises in polycrystalline solar cell images. Several
experiments are conducted to observe the effect of different
data augmentation methods on the ELPV dataset, especially
the small-scale rotation and Gaussian blur. The setting of the
baseline is the same as the above experiments, and different data
augmentation methods are used on the images in the training set.
No additional images are added to the training set. The results
are shown in Table IV.

Not all image augmentation techniques can improve the per-
formance of the model. A series of flipping and rotations has
brought great improvement. Through the results of Gaussian
blur, it can be seen that Gaussian blur with a blur radius of 1
can improve the performance. When the blur degree increases,
which is a Gaussian blur with a blur radius of 2, the effect is not
as good as the baseline. The reason is that the large degree of
image blur can not only eliminate the noise interference but also
severely blur the small defects. The combination augmentation
of flipping, rotation, and Gaussian blur (radius = 1) operations
is better than that of any single image augmentation operation,
as shown in the bottom of Table I'V.

IV. CONCLUSION

Based on the observation of the EL dataset, a defective image
generation approach based on the extraction of defective regions
is proposed. To the best of the authors’ knowledge, this article
is the first work to provide deep research on the data imbalance
problem in defect inspection for EL images of solar cells. There
have been some research works working only on the defect
inspection research of solar cells or only on the problem of
data imbalance in the general domain, but the research that
comprehensively considers the data imbalance problem in the
solar cell defect inspection domain is still in the blank state.

Experiments demonstrate that the proposed method can pro-
vide more information for the model than commonly used over-
sampling and data augmentation, thus alleviating the imbalance
of the EL dataset and improving the learning model’s ability
to inspect defects. Our method enables the rapid and flexible
generation of a substantial quantity of defective images. Exper-
iments verify that expanding the dataset by generating higher
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quality defective samples to balance the distribution of samples
is helpful. Future work can be conducted from this perspective
to further improve the solar cell defect inspection performance
under data imbalance.
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