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 A B S T R A C T

Salient object ranking aims to infer the saliency levels of objects within an image and rank them accordingly. 
Existing methods mainly rely on attention mechanisms to model object-context relations. However, they tend 
to overlook two crucial aspects: the way spatial distance modulates contrast and the correlation between 
instances when assigning relative saliency. To address these issues, we propose a novel salient object ranking 
approach by modeling Distance-weighted COntrast and Instance COrrelation (DICO). Specifically, we propose 
the Distance-weighted Contrast (DCO) module, which utilizes Gaussian functions to simulate a dynamic 
attention distribution among regions. This distribution assigns higher weights to neighboring regions, capturing 
the inherent spatial relations in the scene. By integrating the dynamically generated attention distribution 
with feature-based contrast, the DCO module effectively enables more precise modeling of spatially-aware 
object-context and inter-object contrast. Furthermore, we propose an Instance Correlation (ICO) loss that takes 
into account both the inter-object correlation and individual object fitness. This dual consideration enables 
the model to more effectively learn the relative saliency of different objects. Specifically, the inter-object 
correlation helps to narrow the saliency gap between instance pairs that have close ranks, while individual 
object fitness aims to enhance the saliency scores of highly salient objects and reduce the saliency scores 
of less salient ones. Extensive experiments demonstrate that our method outperforms existing state-of-the-art 
approaches in terms of balancing computational complexity and performance.
1. Introduction

Salient object detection (SOD) is a crucial task in computer vision, 
aiming to locate objects or regions containing important information 
in visual scenes. Since its initial introduction by Liu et al. [1], various 
models have been proposed for this task. Many methods have described 
SOD as a binary prediction problem [2–7] without considering the 
varying degrees of saliency among different objects. However, when 
humans observe images, the visual system shifts attention from one 
object to another, resulting in an uneven distribution of visual at-
tention among objects. In practical applications, saliency ranking of 
different objects can help prioritize critical visual elements in areas 
such as image compression [8], image captioning [9] and autonomous 
driving [10]. This prioritization enhances application performance, 
decision speed, and overall operational efficiency.

As a pioneering work, Islam et al. [11] introduced the concept 
of salient object ranking, but their work only focused on pixel-level 
relative saliency. Siris et al. [12] proposed an approach that leverages 
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both bottom-up and top-down attention mechanisms to predict the 
saliency rank. Fang et al. [13] presented an end-to-end solution that 
combines positional information and attention mechanisms to improve 
the accuracy of ranking. Liu et al. [14] proposed an end-to-end model 
that combines graph reasoning with instance segmentation to rank the 
relative saliency of multiple objects within an image. Tian et al. [15] 
modeled the interactions between region-level and object-level features 
by unifying spatial attention and object-based attention, and devised a 
bi-directional object-context priority learning framework.

Nevertheless, these methods attempt to capture the fuzzy object-
context relations rather than explicitly model information such as the 
distance between objects and the object-context contrast. According to 
human visual cognition principles, objects with higher contrast to their 
surroundings are more likely to be salient, which is a significant factor 
in ranking objects’ saliency. Additionally, the interaction between two 
objects diminishes as their distance increases. As shown in Fig.  1, where 
A represents the right goose and B represents the left goose in the 
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Fig. 1. Illustration of crucial factors that influence salient object ranking, where the 
histograms represent the saliency scores of individual objects. A represents the right 
goose and B represents the left goose in the lower left inset image. The contrast 
between objects in (a) is low, leading to mutual inhibition of their saliency scores. 
Conversely, the objects in (b) have high contrast, resulting in mutual facilitation of 
their saliency scores. A comparison of (c) with (a) reveals that increasing the distance 
between objects reduces the impact of mutual inhibition. Similarly, when comparing 
(d) with (b), increasing the distance between objects diminishes the impact of mutual 
facilitation.

lower left inset image, the low contrast between objects in (a) leads 
to mutual inhibition, which impacts their saliency scores by causing a 
decrease. Conversely, the objects in (b) have high contrast, resulting in 
mutual facilitation that impacts their saliency scores positively. There-
fore, objects in (b) exhibit higher saliency scores compared to those 
in (a). Furthermore, comparing (c) with (a) reveals that increasing 
the distance between objects reduces the impact of mutual inhibition. 
Similarly, when comparing (d) with (b), increasing the distance be-
tween objects diminishes the impact of mutual facilitation. Beyond the 
impact of distance on contrast, another key factor affecting the results 
of salient object ranking is the correlation between object rankings, 
which necessitates explicit modeling.

Based on the above analysis, a method based on the Distance-
weighted Contrast and Instance Correlation (DICO) is proposed for 
salient object ranking. Specifically, we propose the Distance-weighted 
Contrast (DCO) module, which effectively incorporates both contrast 
information and the impact of distance simultaneously. Contrast infor-
mation between regions enables effective localization of salient objects, 
but not all inter-region contrasts yield an equal level of impact. When 
the distance between regions is greater, this impact becomes signif-
icantly diminished (as illustrated in Fig.  1). Therefore, a Gaussian 
function is employed to simulate the dynamic attention distribution 
between regions, aiming to model the distance-related impact.

Furthermore, we reconsider the issue of salient object ranking. 
Previous attempt by Islam et al. [11] aims to model it as a pixel-wise 
regression problem, but such a way leads to unsatisfactory results for 
both segmentation and ranking. Given the saliency properties of salient 
objects, it is more appropriate to treat them as instances. Consequently, 
most prior works have approached the problem from the perspective 
of instance segmentation and treat the saliency ranking prediction as 
a classification task. However, ranking tasks differ significantly from 
classification tasks. To better rank different salient objects, the Instance 
Correlation (ICO) loss is proposed in this paper, which incorporates 
both inter-object relations and the fitness of each individual object.

To sum up, the contributions of this work are as follows:
2 
• Inspired by human visual perception, we propose a relative 
saliency ranking learning method by modeling Distance-weighted 
Contrast and Instance Correlation (DICO).

• We propose a novel Distance-weighted Contrast (DCO) module 
to model the contrast between salient objects and their contexts. 
By integrating dynamically generated attention distribution and 
feature-based contrast, the DCO module effectively quantifies the 
weighted influence of distance on contrast features.

• We reconsider the issue of salient object ranking and propose 
the Instance Correlation (ICO) loss that simultaneously takes into 
account the inter-object relations and individual object fitness, 
enabling the model to better learn the attention shift ranks of 
objects.

• Experimental results show that our method outperforms the state-
of-the-art methods in terms of balancing computational complex-
ity and performance.

2. Related work

2.1. Salient object detection

Since the introduction of the concept of saliency by Itti et al. [16], 
Liu et al. [1] made a pioneering contribution by defining SOD as 
a binary prediction problem. Since then, numerous algorithms have 
emerged in the field of SOD. Early works [17–19] mainly relied on 
low-level features in images to determine the salient regions. How-
ever, these manual features are unable to cope with various complex 
scenes. In recent years, heuristic features based on convolutional neural 
networks (CNNs) have gradually replaced manual features [20]. Some 
works combine basic processing units such as superpixels [21] and 
object proposals [22] with multilayer perceptrons to detect salient 
regions.

Later works, such as UCF [23] and Picanet [24] usually adopt 
fully convolutional networks (FCNs) [25] to improve computational 
efficiency. While choosing advanced network structures as the basis, 
recent methods have also adopted strategies to enrich network features, 
such as multi-stream information fusion [26–28], multi-level feature 
fusion [4,29–31], and attention mechanisms [23,32,33]. Explicit mod-
eling of part–whole relationships [34–36] has been shown to further 
enhance saliency detection by capturing hierarchical object structure. 
Liu et al. [34] introduce Part-Object Relational Visual Saliency, which 
builds a graph to learn interactions between local parts and the entire 
object, leading to more coherent saliency maps. BCNet [35] lever-
ages self-supervised learning to discover part–whole correspondences 
without pixel-level annotations. Furthermore, TCGNet [36] exploits 
correlations between part features and object types, guiding the net-
work to focus on semantically consistent regions across different scales. 
These strategies not only effectively improve the accuracy of SOD but 
also help the network obtain more refined saliency maps.

Recent studies [37,38] leverage the Transformer architecture to 
enhance salient object detection. VST++ [37] improves efficiency and 
accuracy with the Select-Integrate Attention module and a novel depth 
position encoding. VSCode [38] unifies salient and camouflaged object 
detection through 2D prompt learning, providing contextual guidance 
for diverse datasets and tasks.

The aforementioned models in the field of SOD have become ma-
ture, but they are still designed for pixel-level binary prediction tasks 
and mainly focus on the edge details of salient objects. They do not 
predict the saliency ranking values for different objects.

2.2. Salient instance segmentation

A few works have focused on segmenting salient objects as in-
stances. Li et al. [6] first introduced the concept of salient instance 
segmentation (SIS) and constructed the first dataset using pixel-level 
SIS annotations. Fan et al. [7] proposed S4Net, which introduces a 
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Fig. 2. Framework of DICO. Given an input image, we first apply the backbone to obtain the feature map  , which serves as the input of the Saliency Rank Learning. Then, the 
SOR task is divided into two sub-tasks: saliency ranking prediction and mask segmentation, where the segmentation branch is derived from SOLOv2 [42]. The saliency ranking 
branch has: (1) a Distance-weighted Contrast module to extract weighted contrast features, (2) a Channel Attention (CA) module to adjust the weights between the grid feature 
and the contrast feature  and (3) an Instance Correlation loss which considers both the inter-object relations and individual object fitness.
novel ROIMasking layer compared to the classical Mask-RCNN model. 
This innovative layer incorporates feature separation information be-
tween the objects and their surroundings, thus facilitating high-quality 
segmentation. Liu et al. [39] proposed a salient instance segmentation 
method based on Mask R-CNN by integrating saliency and contour in-
formation through a multi-scale global attention model. Tian et al. [40] 
proposed a weakly-supervised method that exploits class labels and 
subitizing labels for SIS. Chen et al. [41] proposed a keypoints-based 
SIS network, employing multiple keypoints as effective geometric guid-
ance for dynamic convolutions to achieve precise segmentation of 
salient instances in images.

While SIS is unable to discern the relative saliency ranking among 
distinct salient objects, its instance-level information remains vital for 
salient object ranking. Therefore, we propose the Distance-weighted 
Contrast and Instance Correlation enhanced salient object ranking 
based on the advanced instance segmentation framework, SOLO [42,
43]. By doing so, we achieve good segmentation performance while 
inferring the relative saliency ranking of each salient object.

2.3. Salient object ranking

Salient Object Ranking (SOR) is a new task. Islam et al. [11] first 
introduced the concept of SOR. They designed an end-to-end network 
based on FCN to solve multi-salient object detection problems. But this 
method only focused on pixel-level relative saliency. Siris et al. [12] 
constructed the first SOR dataset, ASSR, by combining gaze information 
with the existing MSCOCO dataset. Additionally, they proposed an 
approach that utilizes both bottom-up and top-down attention mecha-
nisms to predict the saliency ranking of human attention shift. Although 
Siris et al.’s model has some object perception ability, it is not an 
end-to-end model. Fang et al. [13] pointed out the importance of 
the positional information and the interaction between objects, and 
proposed an end-to-end solution that combines object proposals with 
attention mechanisms to generate the final results. Liu et al. [14] sum-
marized the defects of the ASSR dataset and proposed a new dataset, 
IRSR, with less noise and a larger salient instance number limitation. 
They designed a graph reasoning module based on GNNs to model the 
3 
object-context relations. Tian et al. [15] also focused on the relations 
between objects and their contexts. They designed the selective object 
saliency module and the object-context-object relation module to unify 
spatial attention and object-based attention for SOR. Guan et al. [44] 
predicted the saliency ranking from attention shift through the dynamic 
interaction between foveal and peripheral vision.

The motivation behind these works is to model the object-context 
relations using tools such as attention mechanisms. This has inspired us 
to place a greater emphasis on the object-context relations. However, 
it is also worth noting that these methods rely on the network to 
capture fuzzy relations through learning, and do not model explicit 
factors between objects. Qiao et al. [45] captures semantic relationships 
between objects by constructing and utilizing scene graphs. However, 
Graph Neural Network-related modules result in a large computational 
load for the model. To address this limitation, we propose the Distance-
weighted Contrast (DCO) module and the Instance Correlation (ICO) 
loss, which explicitly incorporate factors such as distance, contrast, and 
rank correlation as pivotal considerations in a more computationally 
friendly manner.

3. Methodology

3.1. Model overview

Observations from human visual perception suggest that the vision 
system is sensitive to contrast in visual signal [17]. On the one hand, 
when an object has a high contrast with its context, it is more likely 
to be salient. On the other hand, when two salient objects are close to 
each other and have high contrast, their saliency ranks will mutually 
enhance each other; when their contrast is low, their saliency ranks will 
mutually suppress each other. This interaction decays as the distance 
between the objects increases, as illustrated in Fig.  1. This motivates us 
to explicitly model this relation from the perspective of contrast.

The overall network architecture is shown in Fig.  2. Given an input 
image, we use the backbone to extract image feature  . Then, the x 
and 𝑦 coordinates are concatenated as position feature  and combined 
with the feature  . We divide the image into 𝑆 × 𝑆 grids, and in Fig. 
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Fig. 3. Structure of our DCO module.
2 we set 𝑆 = 6 for ease of visualization and explanation. Each grid 
is responsible for the SOR task of the object falling into it. The task 
is divided into two sub-tasks: saliency ranking prediction and mask 
segmentation. The segmentation branch is derived from SOLOv2 [42]. 
In the saliency ranking branch, the position feature  are removed and 
the feature  are downsampled to grid feature . To extract contrast 
features between objects and their contexts, we propose the Distance-
weighted Contrast (DCO) module to convert the grid feature  into 
distance-weighted contrast feature . Then, we concatenate  and 
along the channel dimension and input them into the Channel Attention 
module to dynamically adjust the weights between the channels based 
on the CA module proposed by Hu et al. [46]. Finally, by combining 
the results of saliency ranking branch and segmentation branch, we can 
obtain the saliency scores of the corresponding objects.

3.2. Distance-weighted contrast module

Based on human visual perception, the contrast features between 
regions play a critical role in detecting salient objects [17,18,47]. How-
ever, directly using region contrast features has some problems. For 
example, calculating the contrast between each pair of regions requires 
a lot of computing resources. Moreover, when the distance between 
two regions is far, the information provided by their contrast is almost 
zero. To solve these problems, we introduce distance-based weights to 
dynamically adjust the results of region feature contrast based on grids. 
The reasons for preferring grids over instances are as follows: First, 
grids are capable of modeling both inter-object interactions and object-
context contrasts while region feature contrast based on instances can 
only model inter-object interactions; Second, computing region feature 
contrast based on grids can more effectively model Distance-weighted 
Contrast through matrix computations. Seychell et al. [48] pointed 
out that the probability of human visual fixation in the scene follows 
a Gaussian distribution. Therefore, we use the Gaussian function as 
the weight between regions to dynamically adjust the information 
provided by different regions according to their distance, thus obtaining 
more accurate results while avoiding excessive computation. Fig.  3 
shows the details of the DCO module. The whole process of the DCO 
module primarily consists of two parts: Masked Contrast Calculation, 
and Distance-weighted Contrast Calibration. Through the DCO module, 
the saliency scores of different instances can be obtained, whose centers 
locate in one of the grids.
4 
3.2.1. Masked contrast calculation
The goal of Masked Contrast Calculation is to compute the contrast 

between regions. We first generate the adaptive mask 𝑀 by computing 
the Gaussian weight matrix 𝑊 . The Gaussian function’s output serves as 
the distance weight 𝑊𝑝,𝑞 between each grid pair (𝑆𝑝, 𝑆𝑞), where 𝑝 and 𝑞
are the grid indices. Given 𝑆×𝑆 grids, 𝑝, 𝑞 ∈ {1, 2,… , 𝑁} and 𝑁 = 𝑆×𝑆. 
We use 𝐵 different standard deviations 𝜎 = [𝜎1, 𝜎2,… , 𝜎𝐵], resulting in 
𝐵 Gaussian weight matrices 𝑊 = [𝑊 1,𝑊 2,… ,𝑊 𝐵] ∈ R𝐵×𝑁×𝑁 : 

𝑊 𝑏
𝑝,𝑞 = 𝑒𝑥𝑝(−

(𝑥𝑝 − 𝑥𝑞)2 + (𝑦𝑝 − 𝑦𝑞)2

2𝜎2𝑏
), (1)

where 𝑏 ∈ {1, 2,… , 𝐵} and (𝑥𝑝, 𝑦𝑝) denotes the coordinates of grid 𝑝. 
Once 𝑊  is obtained, we can determine the weights of the grid pair 
(𝑆𝑝, 𝑆𝑞) as 𝑊𝑝,𝑞 = [𝑊 1

𝑝,𝑞 ,𝑊
2
𝑝,𝑞 ,… ,𝑊 𝐵

𝑝,𝑞]. For the grid pairs where the 
maximum weight value still falls below the threshold 𝑇 , the calculation 
of their contrast features can be skipped, thereby reducing the overall 
computational complexity. To skip the unnecessary calculation, we 
define the adaptive mask 𝑀 ∈ R𝑁×𝑁  as: 

𝑀𝑝,𝑞 =
{

0, 𝑚𝑎𝑥(𝑊 1
𝑝,𝑞 ,𝑊

2
𝑝,𝑞 ,… ,𝑊 𝐵

𝑝,𝑞) < 𝑇 .
1, 𝑜𝑡ℎ𝑒𝑟𝑠.

(2)

Then we combine feature distance calculation with the adaptive 
mask 𝑀 to obtain the contrast between regions. Given the grid feature 
 ∈ R𝐶×𝑆×𝑆 , we first split it along the channel dimension to generate 
channel-wise grid features  = [1,2,… ,𝑁 ] ∈ R𝐶×𝑁 , where 𝑁 =
𝑆 × 𝑆. Subsequently, we compute the contrast matrix  ∈ R𝑁×𝑁  by 
pairwise calculating the Euclidean distance between the grid features 
based on the adaptive mask 𝑀 : 

𝑝,𝑞 =
{
∑𝑙=𝐶

𝑙=1 (𝑝𝑙 − 𝑞𝑙 )
2, 𝑀𝑝,𝑞 = 1.

0, 𝑀𝑝,𝑞 = 0.
(3)

3.2.2. Distance-weighted contrast calibration
Distance-weighted Contrast Calibration further utilizes the Gaussian 

weight matrix 𝑊  and the contrast matrix  to generate Distance-
weighted contrast feature . Firstly, we perform element-wise multipli-
cation between 𝑊  and , resulting in ′ ∈ R𝐵×𝑁×𝑁 . Then, we compute 
the column-wise sum of ′ to obtain the contrast each grid and its 
surrounding grids, denoted as ′ ∈ R𝐵×𝑁 : 

′
𝑏,𝑖 =

𝑁
∑

′
𝑏,𝑖,𝑗 , 𝑖 ∈ {1, 2,… , 𝑁}. (4)
𝑗=1
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Finally, we reshape ′ to its original form to get the distance-weighted 
contrast features  ∈ R𝐵×𝑆×𝑆 .

3.2.3. Saliency score calculation
To calculate saliency scores, the distance-weighted contrast features 

 ∈ R𝐵×𝑆×𝑆 and the grid features  ∈ R𝐶×𝑆×𝑆 are concatenated along 
the channel dimension and fed into the Channel Attention (CA) module. 
The combined features output by the CA module are then fed into a 
classification head and passed through a sigmoid activation function to 
generate the saliency scores  ∈ R𝑆×𝑆 for different instances, whose 
centers lie in one of the grid cells. After applying the sigmoid function, 
we compute the maximum value across channels to determine both the 
saliency rank 𝑟𝑎𝑛𝑘𝑛 of an instance 𝑛 and its associated confidence 𝑝𝑛. 
Subsequently, the saliency score 𝑛 of instance 𝑛 is derived using the 
following transformation: 

𝑛 =
1

𝐿(𝐿 + 1)
× 𝑅(𝑟𝑎𝑛𝑘𝑛) × (𝑝𝑛 + 𝑅(𝑟𝑎𝑛𝑘𝑛)), 𝑛 ∈ {1, 2,… , 𝑁}. (5)

As defined earlier, 𝑁 = 𝑆 × 𝑆. In the above formula, 𝐿 denotes 
the upper limit of saliency ranks (In the ASSR [12] dataset, L is 5, 
while in the IRSR [14] dataset, 𝐿 is 8). And 𝑅(𝑟𝑎𝑛𝑘𝑛) = L+1-𝑟𝑎𝑛𝑘𝑛, 
which is to ensure a one-to-one correspondence between saliency scores 
and instances’ saliency ranks: The more front-ranked an instance is, the 
higher its corresponding saliency score. For example, when L is 5, the 
object ranked first (with 𝑟𝑎𝑛𝑘𝑛 = 1) has 𝑅(𝑟𝑎𝑛𝑘𝑛) = 5. Since the higher 
the confidence in the saliency ranking of an instance, the greater its 
saliency score, we also add the confidence 𝑝𝑛 to 𝑅(𝑟𝑎𝑛𝑘𝑛). For instance, 
in the ASSR dataset, if a object is inferred to have a rank of 1 with a 
confidence of 0.8, its saliency score can be calculated as follows: 

𝑛 =
1

5 × 6
× (5 + 1 − 1) × (0.8 + 5 + 1 = 1) = 0.97. (6)

During the inference stage, the saliency scores are computed using 
the same process.

3.3. Instance correlation loss

Islam et al. [11] modeled SOR as a pixel-wise regression problem 
and used the pixel-wise Euclidean loss between the predicted saliency 
map and the ground truth (GT) as the loss function. Nevertheless, 
this approach did not consider salient objects as individual instances, 
making it challenging to accurately infer the saliency ranks of each 
object. Siris et al. [12] approached saliency rank prediction from the 
perspective of instance segmentation, modeling it as a rank order clas-
sification problem. In contrast, there are notable differences between 
ranking and classification tasks: for ranking tasks, there is a strong 
relation between different ranks, whereas for classification tasks, the 
relation between different classes is less significant. Liu et al. [14] 
proposed a ranking loss for ranking tasks, optimizing saliency scores 
from the perspective of instance pairs, but they did not focus on 
optimizing for individual instances. Furthermore, they achieved explicit 
optimization of instances with very high or very low ranks by assigning 
greater weights for pairs with large rank differences. However, these in-
stance pairs inherently possess distinguishable characteristics in feature 
distributions, making them relatively easier to discriminate. The true 
challenge lies in modeling the correlation between instances with close 
ranks. Therefore, we propose the Instance Correlation (ICO) loss, which 
combines the considerations of inter-object relations and the fitting of 
the individual instance. The ICO loss is defined as: 
𝐿𝑖𝑐𝑜 = 𝛼𝐿𝑐𝑜𝑟 + 𝐿𝑓𝑖𝑡, (7)

where 𝐿𝑐𝑜𝑟 is the correlation loss, designed to model the correlation 
between instance pairs, particularly those with close ranks. 𝐿𝑓𝑖𝑡 is the 
fitting loss, aiming to promote higher saliency scores for highly salient 
objects and suppress saliency scores for less salient ones by fitting the 
saliency scores of each object to the standard scores. 𝛼 represents a 
hyperparameter that balances the contributions of the two losses and 
is set to 2 in all our experiments.
5 
3.3.1. Correlation loss
Concretely, considering a total of 𝐿 saliency levels, for a training 

image with 𝐾 instances, the GT ranks are denoted as {𝑟1, 𝑟2,… , 𝑟𝐾}, 
where 𝑟𝑘 ∈ {1, 2,… , 𝐿} represents the saliency rank of instance 𝑘, and 
smaller values indicate higher ranks. Based on permutation, we select a 
total of 𝐶2

𝐾 instance pairs for training. For an instance pair 𝑚 consisting 
of 𝑚1 and 𝑚2, with ground truth (GT) ranks (𝑟𝑚1

, 𝑟𝑚2
), and inferred 

saliency scores (𝑠𝑚1
, 𝑠𝑚2

), the correlation loss can be defined as follows:

𝐿𝑐𝑜𝑟 =
𝐶2
𝐾

∑

𝑚=1
𝛽(𝑠𝑚1

− 𝑠𝑚2
)2, (8)

where 𝛽 represents the weight assigned to instance pairs (𝑚1, 𝑚2). When 
𝑚1 and 𝑚2 are close to each other, it is appropriate to assign a larger 
value to 𝛽, thereby giving greater weight to instances that are more 
difficult to distinguish. Inspired by Shepard’s Universal Law of Gener-
alization [49], which shows that generalization probability decays with 
distance following a Gaussian or exponential curve, we employ a Gaus-
sian function to model the weight between instance pairs. This weight 
naturally assign high weight to very close instances and rapidly reduces 
weight for those slightly farther apart. The definition of 𝛽 is as follows: 

𝛽 =
𝑒𝑥𝑝(−(𝑟𝑚1

− 𝑟𝑚2
)2∕(2𝜇2))

∑𝐶2
𝐾

𝑜=1 𝑒𝑥𝑝(−(𝑟𝑜1 − 𝑟𝑜2 )
2∕(2𝜇2))

, (9)

where 𝜇2 is set to 1 in all our experiments.

3.3.2. Fitting loss
𝐿𝑓𝑖𝑡 is defined as the mean-square error between the predicted 

saliency score and the standard saliency score, and it can be expressed 
as follows: 

𝐿𝑓𝑖𝑡 =
1
𝐾

𝐾
∑

𝑘=1
(𝑠𝑘 − 𝑠𝑘)2, (10)

where 𝑠𝑘 is the standard saliency score of instance 𝑘. We consider 
the highest rank to have a standard saliency score of 1, while the 
background has a standard saliency score of 0. Assuming there are 𝐿
saliency levels equally divided, for instance 𝑖 with the GT rank of 𝑟𝑘, 
its standard saliency score 𝑠𝑘 equals to 1 − (𝑟𝑘 − 1)∕𝐿.

3.4. Loss function

Our training loss function is defined as follows: 
𝐿 = 𝐿𝑠𝑜𝑟 + 𝜆𝐿𝑚𝑎𝑠𝑘, (11)

where 𝐿𝑠𝑜𝑟 is the loss function for training saliency ranking branch. 
For a salient object, 𝐿𝑠𝑜𝑟 = 𝐿𝑐𝑙𝑠 + 𝛾𝐿𝑖𝑐𝑜. 𝐿𝑐𝑙𝑠 corresponds to the Focal 
Loss [50]. 𝐿𝑖𝑐𝑜 is the ICO loss. When the ICO loss is used, we set 𝛾 to 
0.3. 𝐿𝑚𝑎𝑠𝑘 represents the loss function for segmentation Branch, which 
employs the Dice Loss [51]. In all our experiments, we set 𝜆 to 3.

4. Experiments

4.1. Datasets

Our experiments are conducted on the publicly available ASSR [12] 
and IRSR [14] datasets. ASSR is the first large-scale dataset for saliency 
object ranking, which is a combination of the MSCOCO [52] dataset 
and SALICON [53] dataset. Each image in the dataset is annotated 
with eye gaze information and contains up to 5 salient objects la-
beled with saliency ranks. It provides 7464, 1436, and 2418 images 
for training, validation, and testing, respectively. IRSR considers both 
eye gaze information and fixation durations to annotate the saliency 
ranks. Additionally, IRSR optimizes the distribution of salient object 
instances, filters out inappropriate images, and limits the number of 
salient instances to 8 per image. It consists of 8988 images, with 6059 
images used for training and 2929 images used for testing.
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Table 1
Quantitative comparison with state-of-the-art methods on the ASSR and IRSR datasets. The corresponding backbone and parameter for each method is provided. ‘‘–’’ indicates 
that the corresponding results are not provided in the source. ‘‘↑(↓)’’ indicates that higher (lower) values indicate better performance. The bold number is the top score and the 
underlined number is the second.
 Method Year Backbone Params FLOPs ASSR test set [12] IRSR test set [14]
 SA-SOR↑ SOR↑ Imgs Used↑ MAE↓ SA-SOR↑ SOR↑ Imgs Used↑ MAE↓ 
 RSDNet [54] 2018 ResNet-101 – – – 0.728 2418 0.139 0.460 0.735 – 0.129 
 BASNet [55] 2019 ResNet-34 332M – – 0.707 2402 0.115 – – – –  
 S4Net [7] 2019 ResNet-50 – – – 0.891 1507 0.150 – – – –  
 CPD-R [56] 2019 ResNet-50 183M – – 0.766 2417 0.100 – – – –  
 SCRN [57] 2019 ResNet-50 97M – – 0.756 2418 0.116 – – – –  
 ASRNet [12] 2020 ResNet-101 – – 0.667 0.792 2365 0.101 0.388 0.714 – 0.125 
 IRSRNet [14] 2021 ResNet-50 489M 128.79G 0.709 0.811 – 0.105 0.565 0.806 – 0.085 
 SOR-PPA [13] 2021 VoVNet-39 454M 311.29G – 0.841 2371 0.081 – – – –  
 OCOR [15] 2022 Swin-L 1.5G 592.34G 0.738 0.904 – 0.078 0.578 0.834 – 0.079 
 RLSOR [58] 2024 ResNet-50 – – 0.713 0.883 – 0.074 0.570 0.822 – 0.093 
 PoseSOR [59] 2024 Swin Transformer – – 0.673 0.871 – 0.072 0.568 0.817 – 0.063 
 CBDI-SOR [60] 2024 VoVNet-39 – – 0.725 0.850 2375 0.082 – – – –  
 Ours(light) – ResNet-18 182M 68.15G 0.652 0.841 2056 0.093 0.470 0.859 2556 0.097 
 Ours – ResNet-101 601M 220.66G 0.729 0.861 2337 0.065 0.587 0.863 2745 0.063 
4.2. Evaluation metrics

To ensure fairness, we adopt the same evaluation settings as [13,
14], using three evaluation metrics: SOR [12], SA-SOR [14], and MAE.

SOR represents the Spearman’s Rank-Order correlation between the 
prediction and GT of the saliency ranks. A higher SOR indicates a 
stronger correlation between the two ranks. For ease of interpretation, 
we normalize the SOR score to the range of [0, 1]. However, in cases 
where there are no common salient objects between the prediction and 
GT, the SOR metric cannot be computed. Such cases are excluded and 
the number of images used for SOR calculation is reported. A higher 
number of images used for SOR calculation indicates a more reliable 
SOR metric. Moreover, another limitation of SOR is that it can only 
measure the accuracy of ranking but cannot characterize the precision 
of segmentation. 

To enhance the SOR metric, the SA-SOR metric is introduced [14] 
to assess the Pearson correlation between the predicted saliency ranks 
and the GT ranks, effectively penalizes both instance omissions and 
redundant segmentation.

MAE metric calculates the average pixel-wise difference between 
the predicted saliency maps and the GT saliency maps, providing a 
measure of the quality of salient object ranking.

4.3. Implementation details

4.3.1. Model settings
Our experiments are based on SOLOv2 [42]. Following its setup, 

the number of grids corresponding to the feature pyramid levels 𝐶1 to 
𝐶5 are [40, 36, 24, 16, 12]. We use a ResNet pretrained on ImageNet [61] 
as our backbone. For SOLOv2, we make some modifications in certain 
details. Specifically, we assign grid labels based on masks instead of 
bounding boxes. During the inference process, for each individual grid, 
we only consider the class with the highest probability.

In the DCO module, we set the threshold 𝑇  as 0.01 to mask out 
negligible weights for computational efficiency and then assign corre-
sponding standard deviations in Eq. (1) based on the number of grids 
which can be regarded as the context to compute the contrast. Specifi-
cally, for each of the five feature pyramid scales, proper standard devi-
ations are set to make sure the context regions (i.e., the regions whose 
weights are higher than 𝑇 ) can cover the surrounding [40, 24, 12, 8, 4]
(modified from the grid numbers to cover a wider range of scales) 
grids. 𝐵 is set to 5 and through calculations, the standard deviations 
are obtained for the five levels as 𝜎 = [6.59, 3.95, 1.98, 1.32, 0.66].
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4.3.2. Training schedule settings
We train our model for 36 epochs on each dataset. We adopt 

SGD [62] as our optimizer with an initial learning rate of 0.0025, which 
is then divided by 10 at 27th and again at 33th epoch. Weight decay 
of 0.0001 and momentum of 0.9 are used. The input image resolution 
is 640 × 480, and the data augmentation operations follow the settings 
in [42]. The training is conducted on two Tesla V100 GPUs, with a 
batch size of 4.

By employing this strategy, the saliency score for the background is 
maintained at 0. Additionally, in cases where two objects have the same 
inferred saliency rank, the probability term allows for differentiation, 
determining which object has a higher saliency score.

4.4. Main results

4.4.1. Quantitative comparison
We compare our method with various state-of-the-art approaches, 

including BASNet [55], S4Net [7], CPD-R [56], SCRN [57], RSD-
Net [54], ASRNet [12], IRSRNet [14], SOR-PPA [13], OCOR [15], 
RLSOR [58], PoseSOR [59] and CBDI-SOR [60]. Table  1 shows the 
quantitative results. The lightweight version of our model uses ResNet-
18 as the backbone, with specific parameters described in [42]. On 
the ASSR test set, OCOR achieves the highest SA-SOR and SOR scores. 
However, they do not provide the number of images used for SOR 
calculation, and their model has more than twice the parameters and 
FLOPs compared to ours. S4Net ranks second in SOR but uses a small 
number of images and has the worst MAE. Our method achieves similar 
SA-SOR to OCOR and has the best MAE. On the IRSR test set, our 
method outperforms all other models on all metrics. Additionally, the 
lightweight version of our model achieves satisfactory performance 
with relatively few parameters. Overall, our method outperforms all 
methods on the test sets in terms of balancing computational complex-
ity and performance. Particularly, it exhibits outstanding performance 
on the IRSR dataset, indicating its unique advantages when dealing 
with a larger number of salient objects and more complex scenes.

4.4.2. Qualitative comparison
We show visualization results in Fig.  4 for qualitative comparison. 

In columns (a)–(c), due to the explicit modeling of contrast between re-
gions in our approach, we better preserve the edge details of individual 
objects, such as the feet of the girl in column (a), the skis in column 
(b) and the contours of the commercial truck in column (c). In columns 
(d)–(h), when it comes to complex scenes and multiple salient objects, 
our method provides better inference of the ranking among objects. For 
example, in column (f), our method accurately identifies the giraffe 
as the most salient object and get the correct result. However, the 
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Fig. 4. Qualitative comparison of our method with other state-of-the-art approaches.
Fig. 5. Further qualitative comparison of our method with other state-of-the-art approaches in complex scenes.
 

IRSRNet, which favor objects with strong semantics (e.g., people), 
mistakenly assigns the highest saliency rank to the leftmost audience 
member. Conversely, while the ASRNet correctly identifies most of the 
salient objects, it overlooks an audience member in the corner. On 
the other hand, the OCOR excessively focuses on highly salient objects 
while disregarding those that are less salient, leading to ranking errors 
among several audience members.

To demonstrate the advantages of our approach in complex scenes, 
we provide additional visualization results as depicted in Fig.  5. These 
images encompass multiple salient objects and exhibit certain back-
ground interferences. Notably, our method provides better inference 
of the ranking among objects, further enhancing the quality of the 
results. For example, in column (g), the larger vessel stands out as 
the most salient object. However, determining the relative saliency 
among the three objects on the shore is challenging. Our method, by 
explicitly modeling distance-weighted contrast, allows us to identify the 
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middle cow as less salient. Additionally, through modeling the instance 
correlation, we accurately capture the relation between the remaining 
two objects.

These visualization results demonstrate the enhanced capability of 
our method in accurately inferring relative saliency rankings.

4.5. Ablation study

4.5.1. Modifications to SOLOv2
We devise several pre-designed improvement directions for SOLOv2,

which are outlined as follows:

• 𝑚𝑎𝑠𝑘𝑙𝑎𝑏𝑒𝑙: assign grid labels based on masks instead of bounding 
boxes

• 𝑚𝑎𝑥𝑝𝑟𝑜𝑏: consider only the saliency rank with the highest proba-
bility for a grid during the inference process
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Table 2
Comparison of different modifications to SOLOv2.
 Method Evaluation Metrics
 𝑚𝑎𝑠𝑘𝑙𝑎𝑏𝑒𝑙 𝑚𝑎𝑥𝑝𝑟𝑜𝑏 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑠𝑎𝑚𝑝𝑙𝑒 𝑐𝑒𝑛𝑡𝑒𝑟𝑏𝑟𝑎𝑛𝑐ℎ SA-SOR↑ SOR↑ Imgs Used↑ MAE↓ 
 0.655 0.864 2309 0.073 
 ✓ 0.692 0.864 2309 0.073 
 ✓ ✓ 0.713 0.865 2310 0.073 
 ✓ ✓ ✓ 0.706 0.864 2322 0.071 
 ✓ ✓ ✓ 0.706 0.859 2307 0.073 
Table 3
Ablation study of our method.
 Method SA-SOR↑ SOR↑ Imgs Used↑ MAE↓ 
 SOLOv2 0.655 0.864 2309 0.073 
 Baseline(Modified SOLOv2) 0.713 0.865 2310 0.073 
 Baseline + ICO Loss 0.720 0.861 2323 0.066 
 Baseline + DCO 0.718 0.864 2332 0.069 
 Baseline + DCO + CA 0.722 0.861 2327 0.066 
 Baseline + DCO + CA + ICO Loss 0.729 0.861 2337 0.065 
• 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑠𝑎𝑚𝑝𝑙𝑒: modify the labeling scheme from assigning labels 
based on the surrounding nine-grid area of a grid to assigning 
labels based on a 0.2 times the bounding box’s width/height

• 𝑐𝑒𝑛𝑡𝑒𝑟𝑏𝑟𝑎𝑛𝑐ℎ: add a branch for the network to regress the true 
coordinates

The impact of the above modifications to SOLOv2 can be seen in 
Table  2. From the table, it can be observed that the combination of 
modifications 𝑚𝑎𝑠𝑘𝑙𝑎𝑏𝑒𝑙 and 𝑚𝑎𝑥𝑝𝑟𝑜𝑏 yields the best performance for 
SOLOv2. Therefore, we adopt this combination as our baseline.

4.5.2. Effectiveness of each component of our method
To demonstrate the effectiveness of the proposed DCO module and 

ICO loss, we investigate the effectiveness of them respectively. In 
addition, we explore the impact of modifying the SOLOv2 model and 
introducing the CA module on network performance. Table  3 shows the 
incremental effects of adding each module to the Baseline, indicating 
the importance of both the DCO module and the ICO loss in salient 
object ranking performance.

4.5.3. Choice of backbone
To further investigate the impact of advanced backbones on our 

method, we employed the Swin series, as detailed in Table  4. Specifi-
cally, Swin-B denotes Base-size variant of the Swin Transformer, while 
Swin-L denotes Large-size variant of the Swin Transformer. When uti-
lizing more advanced backbones, our method consistently demonstrates 
improved performance.

As shown in Table  4, on the ASSR dataset, the SA-SOR metric 
of our method with Swin-L as the backbone achieves the best per-
formance, indicating that with the support of advanced backbone, 
our method can more effectively segment and rank salient objects. 
Although the SOR metric of the OCOR method is higher than that of 
our method, the number of images used to evaluate this metric for 
OCOR has not been reported. Moreover, the SOR metric only measures 
ranking accuracy without penalizing either instance omissions or re-
dundant segmentations, while the SA-SOR metric does account for these 
penalties.

On the IRSR dataset, our model using ResNet-101 as the backbone 
outperforms other methods. Moreover, its performance can be further 
improved by adopting more advanced backbones.

4.5.4. Alternatives of the DCO module
In the DCO module, the Gaussian weight is utilized for Distance-

weighted Contrast Calibration. To further validate our DCO module, we 
compared the Gaussian weight in the DCO module with linear decay 
and uniform matrix. The results are presented in Table  5. The terms 
‘‘DCO→Uni-DCO’’ and ‘‘DCO→Lin-DCO’’ signify the substitution of the 
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Gaussian function in the DCO module with a uniform matrix and a 
linear decay function respectively, while keeping all other operations 
unchanged. The uniform matrix is employed to model long-term re-
lationships from a global perspective. From this global perspective, 
even if two objects are far apart, if their contrast is high, it can still 
significantly influence each other’s saliency scores.

Based on the results obtained from the first and third rows of Table 
5, upon replacing the Gaussian function with a uniform matrix, the SA-
SOR metric shows a big decrease. This can be attributed to the fact that 
this global contrast modeling approach does not consider the influence 
of distance, leading to redundant segmentation, which is penalized in 
SA-SOR. Since the redundant segmentation is not penalized in SOR, the 
SOR metric shows a spurious increase.

When the results from the second and third rows are combined and 
a linear decay function is substituted for the Gaussian function, both 
the SA-SOR metric and the SOR metric exhibit a noticeable decline. 
This finding underscores the effectiveness of employing the Gaussian 
function to model relative distance in contrast modeling, a practice that 
proves beneficial for the task of salient object ranking.

4.5.5. Exploration of the performance impact of the ICO loss
By modifying the loss function of our model, we compare the per-

formance before and after incorporating the ICO loss and evaluate its 
effectiveness. To expedite verification, we employ a lightweight version 
of our model with a ResNet-18 backbone as the baseline, incorporating 
both the DCO and CA modules. The experimental results are presented 
in the upper part of Table  6. It can be seen that both components of the 
ICO Loss, namely the Correlation loss (𝐿𝑐𝑜𝑟) and the Fitting loss (𝐿𝑓𝑖𝑡), 
contribute to the enhancement of the model’s performance. And the 
combination of these two components further improves the model’s ef-
fectiveness. 𝐿𝑓𝑖𝑡 facilitates the alignment of object saliency scores with 
the standard scores. However, for objects that are challenging to rank 
solely based on their features, the effectiveness of 𝐿𝑓𝑖𝑡 is limited. In 
such cases, 𝐿𝑐𝑜𝑟 is necessary to model the correlation between instance 
pairs and correct their saliency scores accordingly. For example, when 
an object with a GT of Rank2 is uncertain about being predicted as 
Rank1, 2, or 3, it can be guided by its correlation with Rank1 as well its 
correlation with Rank3, to constrain its saliency score between Rank1 
and Rank3.

In addition, the selection of appropriate hyperparameters also has a 
certain degree of impact on the performance of the model. The weight 
of 𝐿𝑐𝑜𝑟 is 𝛼 while the strength of its influence is impacted by 𝜇2. Optimal 
effectiveness of 𝐿𝑐𝑜𝑟 can be achieved with appropriate 𝛼 and 𝜇2. When 
𝛼 is very small, 𝐿𝑐𝑜𝑟 has no effect while a large 𝛼 pushes saliency 
scores of all objects together. A small 𝜇2 makes 𝐿𝑐𝑜𝑟 mainly consider 
instance pairs with closest ranks. Higher 𝜇2 results in 𝐿𝑐𝑜𝑟 focusing on 
instance pairs with a broader range of influence and huge 𝜇2 makes 
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Table 4
Ablation study of backbone.
 Method Backbone ASSR test set [12] IRSR test set [14]
 SA-SOR↑ SOR↑ Imgs Used↑ MAE↓ SA-SOR↑ SOR↑ Imgs Used↑ MAE↓ 
 ASRNet [12] ResNet-101 0.667 0.792 2365 0.101 0.388 0.714 – 0.125 
 OCOR [15] Swin-L 0.738 0.904 – 0.078 0.578 0.834 – 0.079 
 PoseSOR [59] Swin-L 0.673 0.871 – 0.072 0.568 0.817 – 0.063 
 Ours Swin-B 0.745 0.843 2050 0.069 0.602 0.867 2870 0.074 
 Ours Swin-L 0.756 0.865 2389 0.067 0.612 0.859 2882 0.070 
 Ours ResNet-101 0.729 0.861 2337 0.065 0.587 0.863 2745 0.063 
Table 5
Ablation study of the DCO module.
 Method SA-SOR↑ SOR↑ Imgs Used↑ MAE↓ 
 Ours(DCO → Uni-DCO) 0.721 0.865 2348 0.069 
 Ours(DCO → Lin-DCO) 0.715 0.857 2319 0.071 
 Ours 0.729 0.861 2337 0.065 

Table 6
Ablation study of hyperparameters in ICO loss. To expedite verification, we employ a 
lightweight version of our model with a ResNet-18 backbone as the baseline.
 Method SA-SOR↑ SOR↑ Imgs Used↑ MAE↓ 
 Baseline 0.640 0.835 2070 0.094 
 Baseline + 𝐿𝑓𝑖𝑡 0.644 0.835 2047 0.093 
 Baseline + 𝐿𝑐𝑜𝑟(𝛼 = 2, 𝜇2 = 1) 0.643 0.848 2021 0.093 
 Baseline + 𝐿𝑐𝑜𝑟(𝛼 = 2, 𝜇2 = 1)+ 𝐿𝑓𝑖𝑡 0.652 0.841 2056 0.093 
 Baseline + 𝐿𝑐𝑜𝑟(𝛼 = 2, 𝜇2 = 3)+ 𝐿𝑓𝑖𝑡 0.644 0.832 2052 0.093 
 Baseline + 𝐿𝑐𝑜𝑟(𝛼 = 1, 𝜇2 = 1)+ 𝐿𝑓𝑖𝑡 0.645 0.834 2049 0.095 
 Baseline + 𝐿𝑐𝑜𝑟(𝛼 = 3, 𝜇2 = 1)+ 𝐿𝑓𝑖𝑡 0.659 0.841 2080 0.093 
 Baseline + 𝐿𝑐𝑜𝑟(𝛼 = 4, 𝜇2 = 1)+ 𝐿𝑓𝑖𝑡 0.651 0.834 2091 0.093 
 Baseline + 𝐿𝑐𝑜𝑟(𝛼 = 6, 𝜇2 = 1)+ 𝐿𝑓𝑖𝑡 0.638 0.835 2051 0.093 

Table 7
Ablation study of the ICO loss. To expedite verification, we employ a lightweight 
version of our model with a ResNet-18 backbone.
 Method SA-SOR↑ SOR↑ Imgs Used↑ MAE↓ 
 Ours(Square Loss → Ranking Loss) 0.649 0.840 2330 0.089 
 Ours(Square Loss → Triplet Loss) 0.64 0.834 2090 0.089 
 Ours(Gaussian Weight → Lin-Weight) 0.651 0.839 2145 0.089 
 Ours(Gaussian Weight → Non-Weight) 0.649 0.838 2180 0.093 
 Ours 0.652 0.841 2056 0.093 

all the instance pairs share the equal weight. As shown in Table  6, 
satisfactory performance can be achieved when 𝛼 is within the range 
of [2,4], and 𝜇2 is set to 1. In all other experiments, we adopt the same 
hyperparameters and set 𝛼 = 2 and 𝜇2 = 1.

We further experimentally validate the applicability of square Loss 
in Formula (8) by replacing the square-loss term with two Margin-
based losses: Ranking loss and Triplet loss. As shown in Table  7, 
the experimental results demonstrate that the square loss achieves 
superior performance. The performance degradation when using Triplet 
Loss originates from its requirement for at least three instances in an 
image: an anchor, a positive sample, and a negative sample. Conse-
quently, Triplet Loss is ill-suited for images containing only two salient 
instances.

To further validate the effectiveness of the Gaussian weight in For-
mula (8), we conduct two ablation experiments, i.e. deleting the weight 
and replacing the Gaussian weight with the linear weight. As shown in 
Table  7, the experimental results demonstrate the effectiveness of the 
Gaussian weight.

4.6. Failure case analysis

When there are many salient objects in the image, it becomes 
challenging to differentiate between lower-ranked objects. As shown in 
Fig.  6, in row (a), our method confuses the third and fourth instances. 
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In row (b), we confuses the rank of the leftmost and rightmost people. 
In row (c), we mix up the order of the third-ranked truck and the 
fourth-ranked car, both of which are located on the far left.

Actually, the above problem is also very challenging for the existing 
salient object ranking methods. For example, in row (b), ASRNet, IRSR-
Net and OCOR did not correctly rank the second salient object. In the 
future, more efforts are needed to address the ranking of lower-ranked 
objects.

5. Conclusion

In this paper, a novel approach DICO is proposed for salient object 
ranking, which effectively model Distance-weighted Contrast and In-
stance Correlation. We propose the Distance-weighted Contrast (DCO) 
module, which utilizes Gaussian functions with different standard devi-
ations to simulate the dynamic attention distribution between regions, 
explicitly modeling the object-context relations from a contrast per-
spective. Furthermore, we propose the Instance Correlation (ICO) loss 
which takes into account both inter-object relations and individual 
object fitness. Extensive experiments have verified that our approach 
outperforms existing state-of-the-art methods while balancing compu-
tational complexity and performance. But when there are many salient 
objects in the image, it becomes challenging to differentiate between 
lower-ranked objects. In the future, more cognitive characteristics of 
human visual system can be explicitly exploited to better predict the 
salient object ranking.
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Fig. 6. Visual examples of failure cases.
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