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Abstract— Electroluminescence imaging becomes a
very useful technique to automatically detect defects for
solar cells since it can provide high resolution electrolumi-
nescence images. However, few methods explicitly consid-
er the visual characteristics of the defects and the noises
in solar cells. In this paper, a global pairwise similarity and
concatenated saliency guided neural network is proposed
by fully considering the observed visual characteristics
in electroluminescence solar cell images. The proposed
network exploits a global pairwise similarity module and
a concatenated saliency module to refine the features ex-
tracted by the convolutional neural network. The global
pairwise similarity module aims to refine the features of
an image pixel by modeling long-range dependencies. The
concatenated saliency module is exploited to suppress the
background and decouple different salient regions to better
represent the features of an image. Extensive experiments
based on five different baselines, i.e. VGG16, ResNet56,
ResNet50, DenseNet40 and GoogleNet, prove that the pro-
posed method significantly outperforms the baseline mod-
els and show that both the global similarity module and the
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Fig. 1. Examples of defective solar cells. In this figure, (a) and (c)
are monocrystalline silicon solar cells, and (b) includes a polycrystalline
silicon solar cell.

concatenated saliency module can help to detect defective
solar cells in electroluminescence images.

Index Terms— Attention, automatic defect detection,
electroluminescence image, saliency, solar cell.

I. INTRODUCTION

ENERGY production from photovoltaic (PV) power sta-
tions has substantially increased over the past decades.

The statistics data reports that about 362 GWp of crystalline
silicon solar modules have been installed worldwide [1]. The
energy efficiency of solar modules which determines the
performance of a power station is highly correlated with their
health condition [2], [3]. In reality, solar modules can be
inevitably damaged caused by the dropping during installation
or the falling of the tree branches. Moreover, faulty soldering
or defective wires during the actual production process can
also cause the damage of solar modules.

Electroluminescence (EL) imaging is a non-destructive tech-
nique, which can provide high resolution EL images and have
a good ability to detect small defects [4]. Thus, EL becomes
a very useful and popular modality for automatic defect
detection of solar modules [5]. Examples of EL images can
be seen in Fig. 1. Fig. 1(a) and Fig. 1(c) are monocrystalline
silicon solar cells, and Fig. 1(b) includes a polycrystalline
silicon solar cell. The monocrystalline silicon solar cell has
a uniform background texture and the polycrystalline silicon
solar cell has a complex background texture [6]. Besides,
intrinsic crystal grain boundaries and extrinsic defects of
micro cracks and breaks have lower intensity. Recent few
years, some works have demonstrated that deep learning based
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Fig. 2. Overview of the proposed method. For simplicity, the proposed global pairwise Similarity and concatenated Saliency guided Neural network
is abbreviated as SSN.

defect detection models can outperform the traditional pattern
recognition methods [7], [8] to detect defects in EL images.
However, few deep learning based methods explicitly consider
the visual characteristics of the defects and the noises in
solar cells. In this paper, a global similarity and concatenated
saliency guided neural network is proposed which exploits a
global pairwise similarity module and a concatenated saliency
module, by fully considering the observed characteristics in
EL solar cell images.

According to our observation, lots of defects in EL solar cell
images are long and thin, shown in the red circles of Fig. 1(a)
and Fig. 1(b), which include one of the common defects named
micro-crack. In the widely used convolutional neural networks
(CNN), the fundamental module is the convolution block,
where the discrete convolution operation is computed based
on a sliding local patch and a small-sized convolution kernel.
Thus, long-range dependencies in images can only be captured
when the convolution operations are processed repeatedly
for CNN. However, repeating local operations usually make
the features of the deep layers blurry and part features of
thin objects in the input image may disappear in the deep
layers. To solve this problem, a global pairwise similarity
module is exploited to refine the features extracted by the
CNN. Specifically, the similarity between each image pixel
and each representative patch is computed and the features
of an image pixel are refined according to the features of all
similar patches.

Another observation of the solar module cell is that there
are a lot of noises in the EL images. One of the noises is
the horizontal gratings, shown in red boxes of Fig. 1(c). The
gratings make it harder to identify the true defects. Moreover,
the background of the polycrystalline silicon solar module
cell (Fig. 1(b)) is complex and contains irregular floccules.
To handle this problem, a concatenated saliency module is
exploited to decouple and concatenate different salient features
to better represent a solar module cell.

Based on the above observations, to improve the feature rep-
resentation capability of the CNN, a global pairwise similarity
and concatenated saliency guided neural network is proposed
to automatically detect defective EL solar cell images. More
specifically, a global pairwise similarity module is exploited to
refine the features of the defects in EL solar cell images, which
are usually long and thin. Furthermore, a concatenated saliency
module is exploited to effectively suppress the background
and extract diverse potential salient features in images. With

the help of the global pairwise similarity module and the
concatenated saliency module, the proposed network can better
represent the features of the defects.

For simplicity, the proposed global pairwise Similarity and
concatenated Saliency guided Neural network is abbreviated
as SSN in the paper. The proposed SSN network is illustrated
in Fig. 2. The basic features of the input image are extracted
via a baseline convolutional module, such as VGG. The image
features are further refined via the proposed network: Firstly,
the image features are refined based on the global pairwise
similarity module; Secondly, the image features are refined
according to the concatenated saliency module. The refined
features help to predict whether the input EL image is defective
or not.

A. Contributions
This work aims to automatically detect defective solar cells

in EL images by proposing a new method and the contributions
of this work are as follows.

Firstly, a global pairwise similarity and concatenated salien-
cy guided neural network is proposed to automatically detect
whether an EL solar cell image contains defects or not. This
network aims to refine the features extracted by the baseline
CNN to better detect defects in EL images. Extensive exper-
iments demonstrate that the proposed network significantly
outperforms the baselines.

Secondly, a global pairwise similarity module is exploited to
capture long-range dependencies and better represent long and
thin defects in solar module cells. Experiments prove that the
global pairwise similarity module helps to recall the defective
EL images.

Thirdly, a concatenated saliency module is exploited to
decouple the features of diverse defects and other potential
noises. Experiments show that the concatenated saliency mod-
ule can help to improve the performance of precision and
detect the true defects.

B. Outlines
The remainder of this paper is organized as follows: related

works are introduced and discussed in Section II; the proposed
network is described in Section III, including the global pair-
wise similarity module and the concatenated saliency module;
Section IV illustrates our testing procedure and experimental
comparison based on five different baselines. Finally, the
conclusion of the paper is made in Section V.
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II. RELATED WORK

EL images provide high visual resolution, which are useful
to detect finest defects of solar modules. However, EL image
can not only exhibits barely visible defects as dark objects,
but also shows random dark regions in the background, which
makes automatic defect detection in EL images difficult. Visu-
al analysis of EL images requires abundant expert knowledge,
which is expensive and time-consuming. Thus, automatic
defect detection of solar module cell in EL images becomes
more and more attractive and active.

Most existing works employed traditional pattern recog-
nition methods to solve this problem. Tsai et al. propose a
Fourier image reconstruction technique to detect defect of
solar module cells with EL images [9]. Since the defects
usually appear as line-shaped objects in the EL images, Tsai
et al. set the frequency components associated with the line-
shaped defects to zero and transformed the spectral image back
to a spatial image. The defect can be detected by computing
the difference between the original image and the Fourier
reconstructed image. Dhimish et al. also detect micro-cracks
in frequency domain based on the binary and discrete Fourier
transform image processing models [10]. Wang et al. classify
solar cell defect by computing the absolute EL intensity loss
rate based on solar cell EL images and image information
[11]. Dhimish et al. calibrate the EL image using a bit-by-bit
gridding technique and an OR gate between each bit of the
nondefective and cracked solar cells [12]. Tsai et al. propose
a defect detection method based on independent component
analysis (ICA) for EL images [13]. Su et al. propose a
discriminable feature descriptor named as center pixel gradient
information to center-symmetric local binary pattern to detect
defect in EL images [14]. Deitsch et al. propose a data-driven
method to detect defective photovoltaic module cell via a
support vector machines classifier (SVM) [7]. In this method,
keypoints are first detected and the features are described via
SIFT, SURF and KAZE. Finally, the feature descriptors are
combined via SVM.

Since 2012, CNN have revolutionized computer vision
tasks [15]. Successively deep convolutional neural networks
have been proposed for image recognition [16]–[19]. The
CNN architecture was first introduced to detect defects for
EL images by Deitsch et al [7]. Deitscha et al. employ a
CNN model, i.e. VGG [18] to automatically classify the
defective photovoltaic module cells in EL images. In this
work, the authors also prepare the performance of VGG with
the performance of SVM based on hand-crafted features and
demonstrate that the CNN is more accurate. Karimi et al. also
find CNN to outperform SVM and Random Forest (RF), with
SVM performing the second best and RF showing the lowest
performance [8].

Since then, a few deep learning based methods are proposed
to deal with the problem of the uncertainties of the labels
created by experts and the lack of positive samples. To deal
with the data uncertainties, Ge et al. propose a hybrid fuzzy
convolutional neural network to detect cell defect [20]. To deal
with the data scarcity, Shou et al. propose a model based on
generative adversarial network (GAN) and auto-encoder (AE)

to detect defect for EL images [21]. Tang et al. propose an
EL image sample generation method by combining traditional
image processing technology and GAN [22]. Akram et al.
generate EL images based on data augmentation operations
[23].

To deal with the similarity between the defect features and
the complex background features in EL images, Su et al.
connect the channel-wise attention and the spatial attention
to Faster RCNN [24], [25]. This work detects cell defect
based on small regions instead of the whole EL image. Thus,
the performance of this method relies on the quality of the
region proposals. Aside from the complex background, very
few deep learning based works explicitly consider the visual
characteristics of the cell defects and the noises in the EL
images. This work attempts to refine the features extracted
by the popular CNN models and propose a global pairwise
similarity and concatenated saliency guided neural network
by considering the visual characteristics in EL images.

III. THE PROPOSED METHOD

According to our observations, the defects in solar module
cells are usually long and thin. Also, there are noises in EL im-
ages, such as gratings and irregular floccules in polycrystalline
solar module cells which may prevent to detect true defects.
This work aims to optimize the convolutional neural network
and improve the feature representation of defects. To this end,
the global similarity and concatenated saliency guided neural
network is proposed. Two modules, i.e. the global pairwise
similarity module and the concatenated saliency module are
exploited in this network and added to the convolutional neural
network to automatically identify whether the input image
contains defects or not.

A. Global pairwise similarity module
The global pairwise similarity module explores the similar-

ity between a pixel and multiple representative patches in the
whole image and updates the features of this pixel according
to the weighted sum of the features of all similar patches.
Assume the feature tensor generated by a baseline convolution
module is F ∈ RC×H×W , where C denotes the number of
feature channels, while H and W represent the height and
the width of the features, respectively. The feature tensor F
is usually large and it would require large amount of memory
if the similarities is computed between each pair of images
pixels.

To reduce the memory requirement and increase compu-
tational efficiency, the features of representative patches P
are first computed according to the feature tensor F . An
input feature F is divided into G×G grids as representative
patches and the max feature value is computed in each grid
as the feature of this grid. Thus, the size of the features for
representative patches P is C × G × G, where G ≤ H and
G ≤W .

To further improve the computational efficiency, an 1 × 1
convolutional kernel is applied to the feature tensor F and the
features of representative patches P to reduce the number of
the channels from C to C ′. The similarity of a pixel Fi(1 ≤
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Fig. 3. The detailed architecture with step-by-step operations of the global pairwise similarity module.

i ≤ HW ) and a representative patch Pj(1 ≤ j ≤ G2) is then
computed according to the reshaped features:

Sim(Fi, Pj) = FiP
T
j (1)

After computing the similarity between each image pixel
and each representative patch, a similarity matrix Sim ∈
RHW×G2

can be got. Then the weight matrix M ∈ RHW×G2

is computed based on the similarity matrix Sim.

M = softmax(Sim) (2)

In this equation, the function softmax is employed to nor-
malize the weights. The similarity weighted feature Fweighted

i

is then computed based on the weighted sum of the features of
the representative patches, where each weight is M(Fi, Pj).

Fweighted
i =

G2∑
j=1

M(Fi, Pj)Pj (3)

An 1×1 convolutional kernel is then applied to Fweighted
i to

change the number of channels from C ′ back to C. And the
refined feature F refined

i is computed as the sum of the weighted
feature and the input feature.

F refined = conv1(Fweighted) + F (4)

The detailed architecture of the global pairwise similarity
module with step-by-step operations is shown in Fig. 3. The
outputs after each operation and its size are indicated in the
corresponding positions. The sizes of the input feature and the
output feature after the global pairwise similarity module are
the same.

B. Concatenated saliency module

Recently, the field of saliency has gained its popularity
since it can be applied to many computer vision tasks, includ-
ing object recognition and person re-identification [26]–[29].
Inspired of the work [28], concatenated saliency module is
exploited to suppress the complex background and decouple
diverse defects and potential noises in EL images.

1) Saliency module: For the input feature tensor F ∈
RC×H×W , an 1 × 1 convolutional layer is first employed
to linearly combine different channels and get a concise
feature matrix X ∈ RH×W . According to our observation,
a solar module cell usually contains horizontal gratings, thus
a horizontal stripe based average pooling operation is applied
to the concise feature map X and generate a compact saliency
descriptor vector V = (v1, v2, ..., vH)T , which size is H × 1.
The compact saliency descriptor vector V is then normalized

Fig. 4. The detailed architecture with step-by-step operations of
saliency module and concatenated saliency module.

with a softmax activation function to get a normalized saliency-
sensitive weight vector N = (n1, n2, ..., nH)T .

ni =
exp(vi)∑H
1 exp(vj)

, i ∈ [1, H] (5)

The saliency tensor is further computed using a broad-
cast multiplication based on the normalized saliency-sensitive
weight vector N and the input feature tensor F . The vector N
would be first broadcasted along the channel and the weight
dimensions to have the same shape as F and then multiplied
with F to get the saliency tensor Sal(F ).

Sal(F ) = N � F (6)
And the saliency enhanced feature E is then computed

by integrating the saliency tensor Sal(F ) and the base input
feature tensor F .

E = Sal(F ) + F (7)
To further mine other potential salient features and represent

diverse image features, the current saliency tensor Sal(F ) is
suppressed by subtraction to get the input feature for the next
saliency module.

F ′ = F − Sal(F ) (8)
This suppression operation aims to alleviate the effect of

the current saliency Sal(F ) on other important features and
highlight other potential salient information.

2) Concatenated saliency module: The saliency suppressed
feature F ′ is then input to another saliency module and get
another saliency enhance feature E′ in the same manner as
introduced in Sec. III-B.1. And all saliency enhance features
are concatenated together to get the final refined features.
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TABLE I
THE CONFIGURATIONS OF DIFFERENT BASELINE MODULES.

VGG16 ResNet56 ResNet50 DenseNet40 GoogleNet
Input (300x300x3 EL image)

[3x3,64] x 2 3x3,16 7x7,64 3x3,24 3x3,1922x2 max pool 3x3 max pool

[3x3,128] x 2
2x2 max pool

[
3x3,16
3x3,16

]
x 9

 1x1,64
3x3,64
1x1,256

 x 3
[3x3,12] x 12

1x1,168
2x2 ave pool

[Inception] x 2
3x3 max pool

[3x3,256] x 3
2x2 max pool

[
3x3,32
3x3,32

]
x 9

 1x1,128
3x3,128
1x1,512

 x 4
[3x3,12] x 12

1x1,312
2x2 ave pool

[Inception] x 5
3x3 max pool

[3x3,512] x 3
2x2 max pool

[
3x3,64
3x3,64

]
x 9

 1x1,256
3x3,256
1x1,1024

 x 6 [3x3,12] x 12 [Inception] x 2

[3x3,512] x 3

 1x1,512
3x3,512
1x1,2048

 x 3

SF = Cat(E,E′) (9)
In the above equation, Cat indicates the concatenation

operation.
The detailed architecture of the saliency module with step-

by-step operations is illustrated in Fig. 4 (a). The output of
every step and its corresponding size have been drawn. The
saliency module would output a saliency enhanced feature
tensor E and a saliency suppressed feature tensor F ′. The
architecture of the concatenated saliency module is shown in
Fig. 4 (b). The saliency suppressed feature tensor F ′ is further
employed as the input feature of another saliency module and
produce another saliency enhanced feature tensor E′. All the
saliency enhanced feature tensors are concatenated together to
obtain discriminative feature representations of an EL image.

The overall defect detection procedure is summarized in
Alg. 1. The basic features of the input image are first extracted
via a baseline module. The image features can be first refined
by the global pairwise similarity module and then be further
refined by the concatenated saliency module to get the final
refined features. A global average pooling layer is employed
to reduce dimension of the refined features and obtain a
feature vector. Then the fully connected layers are applied to
predict whether the EL image is defective or not. The proposed
method is end-to-end and different modules are trained at the
same time.

Algorithm 1 Automatic defect detection for EL images via
global pairwise similarity and concatenated saliency
Input: An EL image.

(1) Extract basic features of the input image via a baseline convolutional module,
e.g. VGG, shown as the Feature Extraction part of Fig. 2.
(2) First refine image features based on the global pairwise similarity module, shown
as the first part of Feature Refining in Fig. 2. The step-by-step computation of this
module has be summarized in Fig. 3.
(3) Further refine image features using the concatenated saliency module to get the
final refined features, shown as the second part of Feature Refining in Fig. 2. The
step-by-step description of this module is illustrated in Fig. 4.
(4) Employ a global average pooling and the fully connected layers as the classifier
to predict whether the EL image contains the defect or not, shown as the Defect
Classification part of Fig. 2.

Output: The defect detection result of the input EL image.

IV. EXPERIMENTS

Our task is automatic detection of defective photovoltaic
module cells with EL images. The proposed global pairwise
similarity and concatenated saliency guided neural network
is modular and independent of the baseline, which can be

easily extended to any convolutional neural network. In order
to demonstrate the effectiveness of the proposed network,
the performance of the proposed neural network is compared
with five popular convolutional neural networks, i.e. VGG16
[18], ResNet56 [16], ResNet50 [16], DenseNet40 [17] and
GoogleNet [19]. The configurations of these baseline models
are included in Table I. The classifier parts of these baselines
are excluded in this table since the baseline models are
employed to extract basic features. For GoogleNet, Inception
is the basic block, which can be referred in the work [19].

A. Experimental setup

1) Database: The database consists of 2624 EL images
which are used for automatic defect recognition [7]. Every EL
image is a grayscale image at a resolution of 300x300 pixels.
According to the type of the source solar module, these EL
images can be divided into two types: monocrystalline solar
cell images and polycrystalline ones. The defect probability
of each image is during 0 and 1. In our experiments, the
probability was binarized with the threshold of 0.5 to get two
different labels: 0 (nondefective, i.e. negative samples) and 1
(defective, i.e. positive samples).

75% of the EL images were randomly chosen as training
samples and the remaining 25% were chosen for testing. Strat-
ified random sampling was employed to retain the distribution
of different types and different labels for the training and
testing sets.

2) Parameter setup: Our implementation was based on
Pytorch. All our experiments were carried out on a 64-bit
Ubuntu OS running with Intel Z390, 32 GB of RAM, and
one NVIDIA GeForce GTX 2080Ti with 11GB of RAM.

For VGG16, ResNet56, DenseNet40 and GoogleNet, pre-
trained weights based on the database of CIFAR-10 were used
to finetune different models. For ResNet50, pretrained weights
based on the database of ImageNet were employed. Data
augmentation was employed to generate additional training
samples to avoid potential overfitting. The training samples
were randomly flipped along the horizontal and vertical axes.
The random scale was limited to the range of [0.9, 1.1] of the
original resolution and the random translation was limited to
±0.1 of the cell dimensions. The training and testing images
were resized to have a resolution of 300x300 pixels.

For simplicity, cross-entropy loss was employed as the loss
function and SGD optimizer was used with a learning rate of
0.005, weight decay of 5× 10−4 and a momentum of 0.9. In
the training stage, the batch size was 20, which could be larger
or smaller depending on the model complexity. The training
process was run with 101 epoches in one single step to classify
solar module cells. For fairness, each model was trained and
tested 7 times and the average performance was adopted to
compare different models.

3) Evaluation Metrics: The probability was thresholded with
the value 0.5 to get the final classification result. Different
models were evaluated using the metrics of Accuracy, F1,
Precision and Recall. Precision is the number of true defective
samples detected by a model divided by the total number of
samples detected. Recall is the number of the true defective
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TABLE II
THE PERFORMANCES OF DIFFERENT MODELS, EVALUATED BY AP, AUC, F1, PRECISION, RECALL, BALANCED ACCURACY (B-ACCURACY) AND

ACCURACY.

Model AP AUC F1 Precision Recall B-Accuracy Accuracy
VGG16 90.86% 93.58% 80.66% 81.43% 80.18% 85.85% 87.98%

VGG16+proposed SSN 92.09% 94.57% 82.45% 82.19% 82.84% 87.31% 89.01%
ResNet56 88.97% 92.22% 70.72% 58.53% 90.13% 80.17% 76.43%

ResNet56+proposed SSN 92.37% 94.69% 81.14% 75.31% 88.38% 87.43% 87.07%
ResNet50 89.18% 92.38% 77.98% 73.25% 83.61% 84.79% 85.23%

ResNet50+proposed SSN 92.79% 94.86% 84.10% 83.98% 84.52% 88.52% 90.02%
DenseNet40 85.34% 89.63% 69.12% 58.58% 84.94% 78.57% 76.17%

DenseNet40+proposed SSN 92.98% 95.37% 82.76% 77.93% 88.45% 88.46% 88.47%
GoogleNet 89.40% 92.73% 78.06% 74.72% 82.41% 83.57% 86.89%

GoogleNet+proposed SSN 92.62% 95.02% 81.92% 77.29% 87.39% 87.78% 87.92%

Fig. 5. The ROC curves and PR curves of the proposed SSN network compared with baselines.

samples detected by a model divided by the total number
of existing defective samples. Usually, both high precision
and high recall are required. As a measure of the overall
performance, F1 score is employed, which is calculated as the
weighted average of Precision and Recall. Since the database
is imbalanced, different models are also compared according
to the Balanced Accuracy.

To further understand different models, the probability is
thresholded with different values in the range of [0,1] to show
the Precision Recall curve (PR curve) and Receiver Operating
Characteristic curve (ROC curve). ROC curve has an attractive
property: it is insensitive to the imbalance degree of the data
[30]. And the Area under the Precision Recall curve (AP) and
the Area Under Receiver Operating Characteristic (AUC) are
also reported.

B. Performance comparison of different models

To demonstrate the effectiveness of the proposed SSN
network, 5 different CNN models are used, i.e. VGG16,
ResNet56, ResNet50, DenseNet40 and GoogleNet as the base-
line. The scores of AP, AUC, F1, Precision, Recall, Balanced
Accuracy and Accuracy of the proposed SSN network and
different baseline models are illustrated in Table II. After
adopting the proposed SSN network to refine the features
extracted by different CNN baseline models, the results prove
that the SSN network is good at promoting automatic defect

detection performance no matter according to which metric
(AP, AUC, F1, Precision, Recall, Balanced Accuracy or Ac-
curacy).

The PR curves and the ROC curves of different models are
shown in Fig. 5. The results demonstrate that the proposed
SSN network can improve the performance of the baselines
with a big gap.

Among the 9 metrics (AP, AUC, F1, Precision, Recall,
Balanced Accuracy, Accuracy, the PR curve and the ROC
curve) employed in the evaluation, AUC, Balanced Accuracy
and the ROC curve are nonsensitive to the distribution of
the training samples and thus can provide a fair score for
unbalanced data. According to these 3 metrics, the proposed
SSN network can better deal with the unbalanced data with
performance promotion.

C. performances for mono and poly solar cells

According to the material of solar modules, the solar cells
can be divided into two types: monocrystalline silicon and
polycrystalline silicon. In EL images, mono solar cell and
poly solar cell present different characteristics. As is shown in
Fig. 1(a) and Fig. 1(c), the background of mono solar cell EL
images is relatively smooth and the background of poly solar
cell has a lot of flocculent noises. These different characteris-
tics can produce certain challenge to correctly detect defect. In
the proposed SSN network, different types of solar cell images
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TABLE III
THE PERFORMANCES OF DIFFERENT MODELS FOR MONO AND POLY SOLAR CELL IMAGES, EVALUATED BY AP, AUC, F1, PRECISION, RECALL,

BALANCED ACCURACY (B-ACCURACY) AND ACCURACY.

Type Model AP AUC F1 Precision Recall B-Accuracy Accuracy

Mono VGG16 91.39% 93.47% 80.52% 79.50% 82.14% 85.31% 86.30%
VGG16+proposed SSN 92.54% 94.53% 82.25% 81.25% 83.70% 86.65% 87.58%

ResNet56 88.94% 91.30% 73.02% 62.57% 88.66% 79.88% 77.13%
ResNet56+proposed SSN 93.89% 95.35% 81.99% 75.53% 90.22% 87.15% 86.19%

ResNet50 92.36% 94.33% 79.07% 71.43% 89.44% 84.98% 83.58%
ResNet50+proposed SSN 94.95% 96.29% 85.91% 84.19% 88.04% 89.60% 90.09%

DenseNet40 88.03% 90.32% 71.58% 60.72% 88.35% 78.55% 75.48%
DenseNet40+proposed SSN 94.10% 95.79% 82.47% 75.35% 91.46% 87.73% 86.57%

GoogleNet 88.41% 91.14% 75.81% 71.11% 82.01% 81.22% 84.38%
GoogleNet+proposed SSN 93.49% 95.27% 80.81% 73.50% 90.22% 86.38% 85.18%

Poly VGG16 90.74% 93.93% 80.83% 83.53% 78.57% 86.02% 89.15%
VGG16+proposed SSN 91.99% 94.82% 82.62% 83.20% 82.14% 87.66% 89.97%

ResNet56 89.44% 93.03% 69.06% 55.81% 91.32% 80.49% 75.94%
ResNet56+proposed SSN 91.32% 94.31% 80.52% 75.56% 86.86% 87.44% 87.68%

ResNet50 87.03% 91.71% 77.05% 75.47% 78.82% 84.15% 86.38%
ResNet50+proposed SSN 91.07% 93.88% 82.59% 83.90% 81.63% 87.51% 89.97%

DenseNet40 83.32% 89.23% 67.15% 57.13% 82.14% 78.27% 76.65%
DenseNet40+proposed SSN 92.23% 95.16% 83.06% 80.48% 85.97% 88.66% 89.79%

GoogleNet 90.28% 93.75% 79.88% 77.68% 82.86% 85.40% 88.64%
GoogleNet+proposed SSN 92.25% 95.00% 82.97% 81.28% 85.08% 88.42% 89.82%

TABLE IV
ABLATION STUDY OF THE PROPOSED NETWORK. VGG16 IS THE

BASELINE. GS INDICATES THE GLOBAL PAIRWISE SIMILARITY MODULE

AND CS IS THE CONCATENATED SALIENCY MODULE. THE PROPOSED

NETWORK IS VGG16+GS+CS
Model AP AUC F1 Precision Recall B-Accuracy Accuracy
VGG16 90.86% 93.58% 80.66% 81.43% 80.18% 85.85% 87.98%

VGG16+GS 91.56% 94.12% 81.35% 80.86% 82.00% 86.55% 88.26%
VGG16+CS 90.99% 93.65% 81.32% 82.38% 80.39% 86.27% 88.48%

VGG16+GS+CS 92.09% 94.57% 82.45% 82.19% 82.84% 87.31% 89.01%

are not separately trained and it is interesting to see whether
the proposed network can well generalize to different types of
solar cells.

The performances of different models are quantitatively
calculated for mono solar cell images and poly solar cell
images, which can be seen in Table III. No matter based
on which baseline, all the metrics (AP, AUC, F1, Precision,
Recall, Balanced Accuracy and Accuracy) indicate that the
proposed SSN network can well refine both the features of
mono solar cell images and the features of poly solar cell
images and thus get a performance promotion for both types.

D. Ablation study
The proposed SSN network is consisted of two modules:

a Global pairwise Similarity module and a Concatenated
Saliency module, which are abbreviated as GS and CS sep-
arately for simplicity. An ablation study is performed to
evaluate each component of the proposed SSN network. Based
on the baseline of VGG16, the global pairwise similarity
module is added to get a temp model, which is indicated
as VGG16+GS. The temp model which only combines the
concatenated saliency module is indicated as VGG16+CS. And
the final model, which combines both the global pairwise
similarity module and the concatenated saliency module, is
indicated as VGG16+GS+CS (i.e. VGG16+proposed SSN),
for clarity. The results of different models are shown in
Table IV. According to multiple different metrics (AP, AUC,
F1, Precision, Recall, Balanced Accuracy and Accuracy),
the final model, i.e. VGG16+GS+CS, has the best overall
performance. The temp model with a global pairwise similarity

TABLE V
THE PERFORMANCES OF THE VARIANT MODELS BASED ON THE

BASELINE OF VGG16 WHEN COMPUTING THE SALIENCY SENSITIVE

WEIGHTS ALONG THE HEIGHT OF AN IMAGE (SALH), ALONG THE WIDTH

OF AN IMAGE (SALW) AND ALONG BOTH THE HEIGHT AND WIDTH

(SALHW)

Metric salH salW salHW
Accuracy 89.01% 87.30% 87.49%

B-Accuracy 87.31% 86.96% 87.08%

module (VGG16+GS) and the temp model with a concatenated
saliency module (VGG16+CS) have the median performances.
And the baseline, i.e. VGG16 has the worst performance. The
experimental results also show that VGG16+GS helps to boost
the metric of Recall, which means that the global pairwise
similarity module can help to detect out the existing defective
images. The reason might be that the global pairwise similarity
module models the long dependencies and can extract the
features of long and thin objects which may disappear or
become blurry in the deep layers of the baseline modules.
VGG16+CS helps to improve the performance of Precision,
which indicates that the concatenated saliency module can help
to improve the accuracy of the samples detected as defective.
The reason might be that the concatenated saliency module
can effectively suppress the background and decouple the
true defective part and the noises in the image background,
such as the horizontal gratings and irregular floccules. Thus,
these noises would produce fewer disturbances in the defect
detection tasks. The above comparisons and observations all
demonstrate the effectiveness of each component for the
proposed SSN network.

As is shown in Fig. 4(a), the saliency sensitive weights are
computed along the height of an image. It is curious to see
how the proposed network works when computing the saliency
sensitive weights along the width of an image and along both
the height and width. These different ways are abbreviated as
salH (along the height), salW (along the width), and salHW
(along both the height and width) separately for simplicity.
The results are shown in Table V.

From the table, it can be observed that computing the
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TABLE VI
THE PERFORMANCES OF THE PROPOSED MODEL WITH DOT PRODUCT

SIMILARITY, COSINE SIMILARITY AND PEARSON CORRELATION

COEFFICIENT BASED ON THE BASELINE OF DENSENET40

Metric dot product cosine Pearson
Accuracy 88.47% 89.41% 88.34%

B-Accuracy 88.46% 88.56% 87.94%

saliency sensitive weights along the height of an image has the
best performance and computing the saliency sensitive weights
along the width of an image has the worst performance. The
reason might be that there are horizontal gratings in EL images
and computing the saliency sensitive weights along the height
of an image would consider each grating as a whole, which
makes sense.

In all the above experiments, the dot product similarity is
employed to measure the similarity between the image pixel
and the representative patch in the global similarity module,
introduced in 1. In this section, different other methods, i.e.
cosine similarity and Pearson correlation coefficient are further
tested to measure the similarity. Table VI shows that cosine
similarity has the best performance while Pearson correlation
coefficient has the worst performance, which indicate that
introducing or designing a proper method to measure the sim-
ilarity may further improve the performance of the proposed
method.

E. Impact of the number of training samples
Because the data is unbalanced, training images are random-

ly sampled with weights. The weight for each class (defective
class and nondefective class) is the reciprocal of the image
number in the corresponding class of the training set. And
the number of training images randomly sampled is set as
3000. This section aims to see how the number of training
samples influences the result of the proposed network. The
performances of the proposed network with 1500 training
samples, 3000 training samples and 6000 training samples
based on the baseline of DenseNet40 are shown in Table VII. It
can be observed that larger number of training samples would
make the proposed network have a better performance. In the
above all experiments, the number of training images is set
as 3000 to save training time. And the performance of the
proposed SSN network can be further improved by using more
training samples.

F. Train loss vs validation loss
The train and validation loss of the proposed SSN network

with DenseNet40 as the backbone are plotted in Fig. 6.
The diagram shows that the validation loss became smallest
at about epoch 60 and the train loss became smallest at
approximately epoch 96. These observations also show that
a small number of samples is easy to overfit and a large
number of training samples may help to further improve the
performance.

G. Discussion
According to the above observations of the experiments,

there are multiple ways to further improve the defect detection

TABLE VII
THE PERFORMANCES OF THE PROPOSED MODEL WITH 1500 SAMPLES,

3000 SAMPLES AND 6000 SAMPLES BASED ON THE BASELINE OF

DENSENET40

Metric 1500 3000 6000
Accuracy 86.92% 88.47% 89.67%

B-Accuracy 87.87% 88.46% 88.80%

Fig. 6. The train and validation loss of the proposed network with
DenseNet40 as backbone.

performance of the proposed network. Firstly, the performance
can be further improved with a larger number of training im-
ages. Secondly, the proposed network can be further improved
by introducing a better method to compute the similarity be-
tween pixels and patches in the global similarity module. The
third way to improve the performance is to separately train two
different types of solar cell images: monocrystalline silicon
and polycrystalline silicon. In the proposed SSN network,
different types of solar cell images are not separately trained
and the experiment results show that the proposed model can
improve the detection performance for both mono solar cell
images and poly solar cell images. However, if separately
training for mono and poly images, the different characteristics
of these two types of images are clearly separated in advance
and the performance of defect detection might be further
enhanced.

Despite the good performance based on the above exper-
iments, there are also shortcomings of the proposed SSN
network. Based on these shortcomings, there are more ways
to improve the performance. The main shortcoming of the
proposed method is that if the defect is small and very similar
to the surrounding background, it is hard for the proposed
method to correctly detect. Actually, small and camouflaged
object detection task is very hard even for natural scene
images. There have been a lot of researchers working on this
task. Introducing useful methods to extract proper features
for small and camouflaged objects would help to improve
the defect detection performance. Another shortcoming of the
proposed method is that the proposed method does not deal
with the uncertainties of the labels created by experts. The
defect detection task can be hard even for an expert, thus there
usually are noises in the data labels. If the uncertainties of the
labels can be further considered, the performance could be
further improved.

V. CONCLUSION

This paper focuses on automatic defect detection for photo-
voltaic module cells in EL images. The main contribution of
this paper is that a global pairwise similarity and concatenated
saliency guided neural network is proposed to refine features
extracted by the convolutional neural network to automatically
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detect defect. The proposed network explicitly considers the
visual characteristics of the defects and the noises in solar
cells. Since the defects in solar cells are usually long and thin,
a global pairwise similarity module is exploited to well model
long-range dependencies in images. Another observation of
the solar module cell is that there are a lot of noises in
the EL images, such as the horizontal gratings and irregular
floccules. Based on this observation, a concatenated saliency
module is exploited to suppress the background and decou-
ple different salient features to better represent a solar cell
image. Extensive experiments based on 5 different baselines
(VGG16, ResNet56, ResNet50, DenseNet40 and GoogleNet)
demonstrate that the proposed network can well refine the
features and improve the defect detection performance for
both mono and poly solar cell images. Also, ablation studies
prove that both the global pairwise similarity module and the
concatenated saliency module are effective.

Despite the good performance of the proposed SSN net-
work, future research is recommended on the following topics.

1) More training samples: There are multiple ways to
introduce more training samples, such as collecting more
defective images, employing useful sampling techniques or
generating samples based on Generative Adversarial Networks
(GAN).

2) Small and camouflaged defects detection. The perfor-
mance might be further improved by constructing an ap-
propriate way to extract multi-scale features and model the
information of the context.

3) Modeling uncertainties. This research could be realized
by modeling the uncertainty of the image sample and introduc-
ing a way to exclude the interference of the uncertain samples.
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