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Referring Solar Cell Defect Segmentation in
Electroluminescence Images

Shenghao Dong *“, Jinxia Zhang

Abstraci—In the photovoltaic (PV) power generation
field, accurately identifying solar cell defects based elec-
troluminescence (EL) images is essential for maintaining
high efficiency for PV power plants. Current solar cell de-
fect segmentation methods typically segment all defects
in the EL image uniformly, making it difficult to precisely
identify specific defects according to maintenance needs.
This limitation hinders personalized defect detection for
smart operation and maintenance of PV power plants. To
solve this problem, a novel task referred to as referring
solar cell defect segmentation (RSCDS) is proposed in this
article. The goal of the RSCDS task is to precisely segment
the specified solar cell defects based on the referring text,
tailored to the personalized maintenance requirements of
actual PV power plants. Given the lack of relevant datasets,
an RSCDS dataset is developed, abbreviated as Ref-EL-
defect, comprising 60 000 pairs of defects and correspond-
ing referring texts. The referring text can indicate single
defect, multiple defects, or even no defects at all in the
EL image, and such multigranularity correspondence en-
ables accurate and personalized segmentation of defects.
In addition, a multimodal multigranularity segment network
is designed for the RSCDS task. By exploiting the char-
acteristics of the solar cell defects, the multimodal fusion
module and multigranularity perception grouping module
are proposed to better adapt to the RSCDS task. State-of-
the-art (SOTA) referring expression segmentation models
designed for natural scene images are transferred to the
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RSCDS task, and experimental results demonstrate that the
proposed method outperforms the SOTA models.

Index Terms—Deep learning, defect segmentation, elec-
troluminescence (EL) image, multimodal learning, photo-
voltaic (PV), referring expression segmentation (RES), solar
cell.

[. INTRODUCTION

OLAR energy, as a renewable resource, holds immense
S potential to address the global energy crisis. The efficiency
and reliability of solar systems are predominantly determined
by the performance of solar cells, which serve as their core
component. However, solar cells are susceptible to various
defects, such as cracks, finger interruptions, and corrosion during
manufacturing, transportation, and operation. These defects can
severely degrade the performance, safety, and longevity of solar
systems. Consequently, the timely and accurate detection and
segmentation of such defects are crucial for maintaining the
optimal functionality and sustainability of solar energy systems.

In the early stages, defect detection in solar cells primarily
relied on manual visual inspection. However, this method was
not only time-consuming and labor-intensive but also highly
susceptible to human error. For large-scale photovoltaic (PV)
power plants, such manual approaches are impractical and eco-
nomically unviable. Recent advancements in computer vision
and deep learning have made automatic defect segmentation
feasible, and deep learning-based models have shown great
potential in this field [1], [2], [3], [4], [5], [6].

Defects in solar cells, which vary by type, size, and location,
have distinct impacts on power loss and overall system per-
formance. For instance, large-sized defects pose an immediate
threat to structural integrity and require urgent intervention,
while small-sized defects, though seemingly insignificant at
first, may develop into more severe issues over time. Moreover,
defects in contact with the busbar have a more pronounced
impact on system performance compared to those located else-
where. However, as illustrated in Fig. 1, traditional defect seg-
mentation methods based on deep learning often rely on a uni-
fied semantic segmentation strategy. Since these methods only
segment defects by type, they operate within a coarse-grained
segmentation framework, making it difficult to capture finer
attributes, such as defect size and location. When specific defect
attributes need to be identified, previous traditional methods
typically segment all defects of different types and then manually
filter the target defects with the specific attributes from the
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Fig. 1. Visual comparison between traditional defect segmentation
tasks and our RSCDS task: For solar cell EL images containing multiple
defects, traditional defect segmentation tasks apply a uniform segmen-
tation strategy to all defects. In contrast, RSCDS task can accurately
segment the specified defect based on the referring text. By combining
image and text information, it enables more accurate segmentation of
defects in solar cells.

segmentation results. The above-mentioned process is resource-
intensive and susceptible to subjective bias, resulting in unreli-
able outcomes. This limitation significantly hinders the ability
of existing segmentation approaches to meet the personalized
demands of PV power plants. Consequently, there is an urgent
need to develop a framework capable of accurately segmenting
defects based on detailed and diverse requirements.

To address the above-mentioned limitation, a new task termed
“referring solar cell defect segmentation (RSCDS)” is proposed.
This task introduces a more refined defect segmentation frame-
work. As illustrated in Fig. I, RSCDS leverages referring text
to specify the defects of interest in EL images, enabling precise
segmentation tailored to the unique maintenance needs of PV
plants. For example, given the referring text “all small-sized
defects in the EL image,” RSCDS can accurately segment all
minor defects, meeting preventive maintenance requirements in
real-world scenarios and preventing them from evolving into
more severe issues.

Moreover, a multimodal dataset for RSCDS comprising
60 000 EL image—text pairs was constructed. The RSCDS
dataset combines image processing techniques with text tem-
plates to generate textual descriptions for various defects in
the images. To achieve flexible and robust segmentation, fine-
grained templates were designed for precise single-defect seg-
mentation, and coarse-grained templates were created for multi
target defect segmentation. In addition, no-target templates were
constructed to address cases where the described defect is absent
in the image, thereby enhancing the dataset’s robustness.

Furthermore, a model called multimodal multigranularity
segmentation network (M2SegNet) is designed for the RSCDS
task. To better integrate the multimodal data in the RSCDS task,
amultimodal fusion (MMF) module is developed, which utilizes
attention mechanisms to associate the referring text with corre-
sponding regions in the image. To address the multigranularity
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aspect of the referring defect segmentation task, a multigranu-
larity perception grouping (MPG) module is proposed. Inspired
by characteristics of human visual cognition, this module en-
ables the model to perceive targets ranging from coarse to fine
granularity based on perceptual grouping method. It classifies
and groups pixels of the feature map through learnable grouping
queries.
In summary, the contributions of this study are as follows.

1) The RSCDS task is introduced in this study, designed
to enable precise segmentation of specified defects in
electroluminescence (EL) images for personalized main-
tenance requirements.

2) A large-scale dataset named Ref-EL-Defect, containing
60 000 EL image—text pairs, is presented in this study.
To the best of our knowledge, this is the first large-scale
multimodal dataset specifically developed for solar cell
defect segmentation.

3) A novel framework called M2SegNet, which integrates
MMF and MPG modules, is proposed in this study.
Through experiments, state-of-the-art (SOTA) perfor-
mance on the RSCDS task is demonstrated by the pro-
posed method, surpassing existing referring image seg-
mentation models tailored for natural scenes.

Il. RELATED WORK
A. Referring Expression Segmentation (RES)

In the current field of multimodal deep learning, RES is
an important task. By deeply understanding and processing
image—text information, RES enables the precise segmentation
of relevant objects in an image based on referring text. This
task has made significant progress in various visual domains,
including natural scenes and camouflaged targets [7], [8], [9],
[10], [11].

Huetal. were the first to propose the RES task. RES originated
from a similar task called referring expression comprehension
(REC) [7], [12], [13], which produces the bounding box of
a target in an image based on textual descriptions. The first
datasets for RES and REC were Referlt [8]. Yu et al. [9] later
used the Microsoft COCO dataset as the image data source to
construct the RefCOCO natural scene RES dataset, which has
become widely used in research. Zhang et al. [10] developed
the R2C7K dataset based on the task of camouflaged object
detection, creating a large-scale referring camouflaged object
segmentation dataset from real-world camouflaged object im-
ages. Liu et al. [11] further extended the concept by proposing
the generalized RES task, which allows referring text to point
to any number of target objects. They constructed the gRef-
COCO dataset and proposed a baseline model called ReL A to
better handle multitarget matching scenarios. To the best of our
knowledge, existing RES datasets mainly focused on natural
scenes.

However, currently there is no multimodal image—text dataset
available for solar cell defect detection or segmentation, making
it difficult to detect specific defect based on the personalized
maintenance needs of each power plant.
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B. Solar Cell Defect Inspection

Noncontact, high-efficiency defect inspection using com-
puter vision have become mainstream methods in the solar cell
field [14], [15], [16], [17], [18].

Some studies have explored defect inspection using thermal
infrared imaging. Shen et al. proposed a modified U-Net incor-
porating batch normalization and RMSprop to achieve accurate
segmentation of PV arrays in complex thermal images, thereby
facilitating subsequent defect detection within the PV array.
Since eddy current thermography (ECT) exhibits advantages
in detection sensitivity and spatial resolution compared to con-
ventional thermography, Du et al. [18] integrated ECT with
a convolutional neural network, demonstrating superior defect
inspection performance through experimental comparisons. In
addition, the study shows that ECT is more sensitive to external
defects, such as surface scratches and impurities [18].

Due to its effectiveness in diagnosing internal defects, EL
imaging has been widely adopted for solar cell defect inspec-
tion [19]. Dhimish and Mather [1] proposed a microcrack de-
tection system for manufacturing execution. Otamendi et al. [2]
created a scalable framework for automatic defect labeling in
EL images. Zhang et al. [3] introduced a novel lightweight
and high-performance defect detection model for solar cell
EL images, utilizing neural architecture search and knowledge
distillation. Fioresi et al. [4] developed the large-scale “UCF-EL”
dataset, which includes 17 064 high-quality EL images, and
built a corresponding defect segmentation method based on the
DeepLab v3+ network. Wang et al. [5] introduced the RERN
deep learning network, enabling more accurate segmentation of
defect areas by the extraction and refinement of edge features.
Zhang et al. [6] enhanced convolutional features using global
similarity and saliency modules, outperforming five baseline
models. To enhance defect representation, Yang et al. [20]
proposed a fusion method that combines electrothermography
and EL images, leveraging an L.1-norm-based sparse represen-
tation algorithm to effectively integrate information from both
modalities.

Despite their impressive performance, existing methods in-
spect all defects in a uniform manner, neglecting the specific
maintenance requirements of PV systems. For example, coastal
power plants must prioritize corrosion detection, whereas those
in arid regions focus on thermal stress cracks. This limitation
prevents existing approaches from effectively addressing the
personalized inspection of specific defects.

[Il. DATASET CONSTRUCTION AND STATISTICS

Due to the lack of multimodal datasets containing text de-
scriptions of PV defects, a multigranularity and multimodal
RSCDS dataset in EL images, abbreviated as Ref-EL-Defect,
is constructed to achieve personalized defect segmentation in
solar cells.

A. Dataset Construction

This section constructs an RSCDS dataset, i.e., Ref-EL-
Defect, based on the publicly available solar cell defect

TABLE |
ATTRIBUTES AND CHARACTERISTICS OF SOLAR CELL DEFECTS

Attribute  Description
Crack-closed: A closed seam that does not significantly
affect current flow.

Crack - resistive: Impairs current flow to the ribbon while

Category- . L.

type malntalr.ung battery connectlv.lty. ) )
Crack-isolated: Completely isolates a section of the cell
from the ribbon (e.g., lobe cracks).

Interconnect -disconnected: Broken interconnections, of-
ten due to soldering failures.

Interconnect- highly resistive : Weak interconnections
with high resistance, often caused by over-soldering.
Contact- corrosion : Corrosion caused by moisture enter-
ing cell gaps.

Contact- finger interruption: High strain at solder joints,
visible as dark rectangles near busbars.

Location Intersected with busbar: Defects that touch the busbar.
Not intersected with busbar : Defects that do not touch
the busbar.

Size Small size: Minor defects covering fewer pixels.

Large size: Significant defects covering more pixels.

segmentation dataset UCF-EL [4]. To automatically and accu-
rately construct referring texts that describe personalized main-
tenance needs, four basic attributes of defects were summarized
based on prior knowledge of solar cells. Table I details these
key attributes: defect category, defect type, defect size, and
defect location. For the images in the UCF-EL, image processing
techniques are employed to extract the four attributes of each
defect in the images. Next, text templates are designed using
these basic defect attributes. With these templates, referring texts
describing maintenance needs can be automatically generated.
By utilizing various text templates, a wide range of referring
texts can be produced.

Based on relevant research in solar cell defects [14], the de-
fects are divided into three major categories, further subdivided
into seven defect types. The characteristics of each defect type
are shown in the upper part of Table I.

The middle part of Table I lists the location attributes of
defects. Since the busbar is the conductive strip that captures
and converges current, defects touching with the busbar directly
affect the core path of current convergence, significantly im-
pacting the power output of the module. Therefore, the defects
in solar cell are classified into two major categories based on
whether the defect touches with the busbar.

As shown in the lower part of Table I, solar cell defects can
be categorized by size into small size and large size defects. By
drawing on the definition of small objects in the field of natural
scenes [21], if the ratio of the defect area to the image area is less
than 0.6%, it is defined as a defect with small size. Otherwise,
it is identified as a defect with large size. The size of a defect
directly affects the performance of the solar cell.

Table II presents some of the text templates designed in
this study, which are used to construct various referring texts.
As shown in the upper part of Table II, Each text template
includes descriptions of the four different attributes of a solar cell
defect, ultimately forming referring texts such as “The [Type]
[Category] defect(s) [LLocation] with [Size] in EL image.” This
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TABLE Il
GRANULARITY AND REFERRING TEXT TEMPLATES

Granularity Referring text templates

Fine granularity The [Type] [Category] defect(s) [Location] with [Size]
in EL image.
The [Category] defect(s) is [Type] and [Location] with

[Size] in EL image.

Coarse granularity All [Category/Size/Location] defects in EL image.
The [Category] failures with [Size] in EL image.

Various types of defects in EL image.

Closed

Touching in Busbar

Enormous Size

>

Not Touching in

Busbar Small Size

Contact Finger Interruption

Fig. 2. Schematic diagram of the four attributes of solar cell defects.
These four attributes are defect category, defect type, defect size, and
defect location.

method allows for the creation of fine-grained referring text-
specified defect relationship. Fine-grained relationship refers to
a single referring text corresponding to a specific defect in the
EL image.

In order to enhance the robustness of the RSCDS dataset,
it is also necessary to consider coarse-grained and no-target
scenarios. Coarse-grained text represents a single referring text
corresponding to multiple solar cell defects. As shown in the
lower part of Table II, coarse-grained text templates are designed
to automatically generate the corresponding referring texts. For
the no-target scenario, referring texts are designed with attributes
unrelated to all defects in the EL image.

For a specific defect, the four basic attributes of the defect
are identified in Fig. 2. Based on the text templates provided
in Table II, referring texts describing the specified defects are
automatically generated. By designing diverse text templates,
multiple referring texts can be generated for a single defect,
thereby enhancing the diversity of the dataset.

B. Data Statistics

Examples from the Ref-EL-Defect dataset are illustrated in
Fig. 3, where (a)-(b) showcase fine-grained samples, (c)—(d)
coarse-grained samples, and (e)—(f) no-target samples. The
dataset comprises 60 000 referring texts, each corresponding
to specific defects in EL images. These samples are categorized
into three groups: fine-grained (40%), coarse-grained (40%),
and no-target (20%). Fig. 4(a) and (b) focuses on the category
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No corresponding
defects

“The Closed type Crack defect
touching in busbar with enormous
size in EL image”

(@)

“All Contact failures with enormous
size in the EL image”

“The Interconnect defects shows in
the EL image”

(©)

No corresponding
lefects

“The touching in busbar defect
which is Finger Interruption of

“The not connected to busbar defect
which is Finger Interruption of
Contact class with tiny size "

“The Corrosion Contact defect
which is not connected o busbar with
Large size in the EL image”

Contact class with tiny size”

Fig. 3. Samples in the Ref-EL-Defect dataset, where (a) and (b) are
the fine-grained samples, (c) and (d) are the coarse-grained samples,
and (e) and (f) are the no-target samples.
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e Closed
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. lsolated
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Fig. 4. Statistical Analysis of the Four Attributes from the Referring text

Templates in the Datase.(a) depicts the quantity distribution of different
defect attributes (e.g., contact, crack, interconnect); (b) details the types
of defects, including finger interruption, closed, resistive, etc.; (c) shows
the spatial distribution relative to the busbar ("TRUE" indicates defects
in contact with the busbar, while "FALSE" denotes those not in contact);
and (d) categorizes defects by size as either "Small" or Large.

and type analysis. The dataset contains the highest number of
defects in the contact category, with finger interruption being
the most frequent type. These defects also have the highest
occurrence rate in real-world PV systems, providing the model
with a realistic and practical learning environment. In Fig. 4(c),
defects are classified as either “True” (touching the busbar) or
“False” (not touching). The balanced distribution between these
two types ensures comprehensive data representation. Fig. 4(d)
shows that, small defects make up the majority of the dataset,
accounting for 70%, while large defects represent the remaining
30%. Although larger size defects are less numerous, their
impact on the actual conditions is equally significant due to the
greater number of pixels cover.

IV. PROPOSED FRAMEWORK FOR RSCDS TASK

Compared to traditional defect segmentation tasks, the
RSCDS task is required to segment the corresponding defects
based on a referring text. As a result, the RSCDS task involves
processing multimodal information from both images and text.
In addition, a referring text may correspond to one defect,
multiple defects, or no defect at all. Therefore, the image—text
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Fig. 5.

Framework of the proposed M2SegNet. It consists of three main components: the MMF module, the MPG module, and the TGD. In the

MMF module, text and image features are deeply integrated to generate fusion features. The MPG module progressively identifies solar cell defects
from coarse to fine using learnable grouping queries, producing grouping features. These features are then combined and decoded in the TGD to

generate the segmentation mask.

correspondence in this task exhibits multigranularity character-
istics.

Section IV-A introduces the task definition of RSCDS task.
Section IV-B presents the overall architecture of the proposed
M2SegNet model. Sections IV-C and IV-D provide detailed
descriptions of our MMF module and MPG module, which
are used to handle the alignment between modalities and the
processing of image—text information at different granularities.
Section IV-E elaborates on the text-guided decoder (TGD),
which further refines and segments the specified defects under
the guidance of the text.

A. Task Description

The goal of the RSCDS task is to segment specified defects
in EL images of solar cells, based on the input referring text,
thereby achieving personalized segmentation of solar cell de-
fects, which facilitates subsequent operation and maintenance of
PV power plants. The input for the RSCDS task consists of two
parts: the first part is the EL image of the solar cell, denoted as
IEL € REXW>3 'where H and W represent the height and width
of the EL image, respectively; the second part is the referring text
of the target defect to be detected, denoted as TR € R!, where I
represents the length of the input referring text. The final output
is Imask ¢ REXWx1 “which represents the segmentation mask
corresponding to the referring text in the image.

B. Overall Architecture

The overall framework of the proposed model is depicted
in Fig. 5. In this study, the Swin Transformer is employed as
the image encoder to extract image features F; € R *WxC1,

where H and IV denote the spatial dimensions of the features,
and C denotes the channel dimension. The input referring text
is encoded using BERT, producing text features F; € R/*C2,
where [ is the length of the referring text and C; represents the
embedding dimension of the text features.

The text features F; and image features F; are first fed into
the MMF module. This module fuses and aligns the image and
text features based on the attention mechanism, outputting the
fusion features Fron € RT*W*C which are image features
guided by the referring text.

To better handle multigranularity information, the fusion fea-
tures are further input into the MPG module. In this module,
the learnable grouping queries Qgroup € R**C are introduced,
where k denotes the number of perception groups. The proposed
MPG module can aggregate pixels of the same category within
the feature map. In this study, different numbers of queries are
defined at different scales, accompanied by the execution of the
cross-attention mechanism ¢ times. It can gradually perceive the
target defect from coarse-grained to fine-grained, with fewer
categories set at deeper features and more categories at shallower
features. The final output of the MPG module at each scale
constitutes the grouping features Fyou, € R

Subsequently, the text features, image features, grouping fea-
tures, and fusion features are all sent to the TGD, which outputs
the segmentation mask I € R W1 achieving precise seg-
mentation.

C. Multimodality Fusion

To achieve efficient and precise MMF, a multimodal feature
fusion module is designed. This module effectively fuses the
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text features with the image features. At each feature scale,
a submodule is employed to fuse the image features and text
features at that specific scale, as shown in Fig. 5. Multiple
submodules are used to perform the fusion at different scales,
generating a MMF feature set that contains features at various
scales.

The MMF module is based on the attention mechanism.
Specifically, the input text features F; are first aligned the feature
scale by a linear layer and reshape operation. The input image
features F; are aligned the feature scales in the same way, result-
ing in reshaped features of size HW x C'. Then, cross-attention
between text and image features and self-attention for the image
features are performed parallel. The cross-attention helps to
capture the correspondence between the referring text and image
regions, while the self-attention focuses on the locations of
defects within the image.

The results of the cross-attention between text and image
features and the self-attention for the image features are concate-
nated and then fused through a 1 x 1 convolution to produce the
image features guided by the referring text. The specific process
can be defined as follows:

Fusion = Convy, (Concat(MHCA (7%, 7%), MHSA(7%))) (1)

4" = Linear(Reshape(F;)), ~' = Linear(Reshape(F};)) (2)

where Conv, | represents the 1 x 1 convolution, Concat denotes
feature concatenation, MHCA and MHSA stand for multihead
cross-attention (MHCA) and multihead self-attention mecha-
nism, respectively, and 7 and ' represent the dimension-
aligned text features and image features, respectively.

In this model, feature fusion is conducted at different scales
of the image features, ultimately generating multiscale fusion
features as the output.

D. Multigranularity Perception Grouping

To accurately identify multigranularity targets, the MPG mod-
ule is proposed. Based on perceptual grouping characteristics,
it enables a progressive identification from coarse to fine gran-
ularity.

Inspired by learnable query-based framework [22], learnable
grouping queries are designed to analyze components of varying
granularity within the feature map. Unlike single-modal query-
based segmentation framework, MPG is tailored for multigran-
ularity segmentation and integrates multimodal information,
enhancing the robustness of defect identification.

As shown in Fig. 5, first, the feature map F; extracted by
the image encoder at a certain scale and the fusion feature
Fiusion extracted in the MMF submodule are aligned in feature
dimensions through linear layers. It can be defined as

fusion

4% = Linear(Reshape(F})), y = Linear(Reshape (Fiysion))

3)

where ¢ and ™" represent the image features and fusion
features after dimension alignment, respectively.

Subsequently, the MPG module needs to effectively adapt

to multimodal features. The aligned features are then passed

through MHCA, allowing the model to inject the image features

into the fusion features, thereby enhancing robustness of the

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

model. It can be defined as
fZ/ — MHCA(’yl7 ,yfusion) . (4)

Instead of treating queries as instance-level representa-
tions [22], the MPG module introduces learnable grouping
queries that dynamically adapt to the granularity of different
feature levels. These queries allow the module to dynamically
adjust its focus based on the granularity of the current module
and the content of the image. Each query acts as a semantic
cluster center, progressively refining the defect representation.
Specifically, the grouping features fSF are generated through ¢
iterations of cross-attention

Qlj;:rLable = MHCA (f7f7 Qljearnable)7
Fgroup = MHCA,— l(fm Qledrndble) (6)

The core of the MPG module is the progressive perceptual group-
ing mechanism. To achieve progressive perceptual grouping,
the MPG module adaptively adjusts the number of grouping
queries based on feature depth. Different numbers of learnable
queries are set at different feature scales. The MPG submodule
sets fewer group queries for deep features (corresponding to
coarse granularity) and gradually increases the number of group
queries for shallow features (corresponding to fine granularity).
This enables multigranularity solar cell defect perception group-
ing, from coarse to fine granularity. With n different scales of
image features, n different granularity grouping features can be
obtained. The numbers of learnable queries will be discussed in
Table VII in the ablation study.

je [07t_ 1] (5)

E. Text-Guided Decoder

In the TGD, the perceptual grouping feature ngmup on scale
j first facilitates cross-attention mechanism with the text fea-
ture Fy, yielding text-enhanced grouping features Fg These
enhanced features are then multiplied by the text-guided fusion
features Ffumn at scale j, resulting in the decoding features
Fdecode for that scale. Through this process, multiscale decoding
features {dede }_, are obtained based on the multiscale image
features. The workflow of scale j is simplified as follows:
FJ = MHCA(F? F’) FJ FJ X Ff]USlOn @)

group’ decode

where MHCA represents the MHCA mechanism, and the super-
script j indicates the current scale.

In addition, to extract and reconstruct pixel-level features from
the input image to optimize segmentation results, the image
features F; are passed through a pixel decoder for presegmen-
tation [22]. The result of the operation are the mask features
Fiask, which is concatenated with the multiscale decoding
features {Fj, o4} =, forming the pyramid decoding features
{F djecode ;’L:O'

The resulting pyramid decoding features are processed
through convolutional modules, involving convolution, concate-
nation, and upsampling, with the Relu activation. Ultimately the
output mask I, is generated. The process is defined as follows:

Igecoder = Convy (Concat(Fdecodm Ige—tolder))v 0< j<n 3)
Tnask = I((i)ecoder' )
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As forno target samples, to determine whether the inputimage
contains a target corresponding to the referring text, the pyramid
decoding features { F}j, 4 }j—o are dimensionally adjusted and
passed through an MLP to compute the target indicator. The
target indicator is a binary classification result that assesses the
presence or absence of a target corresponding to the referring
text.

The model’s loss function comprises two components: the
mask segmentation loss and the target presence loss. These
losses are calculated based on the model’s two outputs, Iiask
and the target indicator. The final model loss is a weighted sum
of these two losses. It can be defined as

L = alce_mask + 5Lceflarget~ (10

The cross-entropy loss is chosen to compute the mask part and
the target part of (10).

V. EXPERIMENTS AND DISCUSSION
A. Experiment Setup

During training, the parameters of the M2SegNet backbone
network are frozen and the batch size is set to 4. The opti-
mizer uses Adam. The learning rate was initialized to le-5 and
gradually decayed to le-7. All experiments are implemented by
PyTorch and conducted on the Nvidia RTX 3090 GPUs. In the
MPG module, the number of learnable grouping queries is set
to [2,5,9], and the iterations of MHCA ¢ are set to 3. The loss
function weights o and 3 are set to 1 and 0.1, respectively. For
computational efficiency, the model was tested in a single GPU
environment.

Its deployment on edge devices was explored. The model was
evaluated in an Intel Xeon Gold 6148 CPU environment. In
addition, it was assessed on the NVIDIA Jetson Xavier NX edge
device.

B. Evaluation Metrics

In the experiments, the cumulative Intersection over Union
(cIoU) metric, commonly applied in RES tasks, was used to
evaluate the model’s performance [11]. However, cloU is less
accurate for small defects. Therefore, the generalized IoU (gloU)
metric was also employed, which averages IoU across all images
and optimizes for no-target samples [11]. For no-target samples,
the IoU is set to 1 if the target indicator is correctly predicted and
0 otherwise. Precision at different thresholds (Pr@X) measures
the proportion of test samples meeting the IoU threshold, with
values ranging from 0.1 to0 0.9. The mean Pr@X (mPr) is adopted
as an evaluation metric. Furthermore, recall, precision, and F1
Score are employed to evaluate segmentation performance. The
GFLOPs, FPS, and Params are also employed to evaluate model
efficiency.

C. Comparison Results on RSCDS Task

To demonstrate the effectiveness of our approach, the pro-
posed M2SegNet model is compared with six SOTA methods
for RES in natural scenes: ReSTR [23], LAVT [24], Poly-
Former [25], ReLA [11], CARIS [11], and ReMamber [27], as

shown in Table III. For a fair comparison, all methods were
fine-tuned on the RSCDS dataset. The experimental results
demonstrate that the M2SegNet model outperforms other mod-
els across most metrics.

1) Performance Analysis: The proposed model achieves
high cIoU and gloU scores, benefiting from the MMF module,
which enhances defect detail capture through effective visual—-
text integration. The gloU metric further highlights its advan-
tage in segmenting small defects and handling multigranularity
samples. In addition, the MPG module aids in progressively
localizing specified defects, improving recognition of small and
no-target samples. While M2SegNet’s recall metric is slightly
lower than the ReMamber model, it still outperforms all other
models, but M2SegNet has a clear advantage in Precision, which
reflects segmentation accuracy and completeness, largely due to
the MMF module’s superior fusion performance. Furthermore,
M2SegNet surpasses ReMamber and others in the F1 score,
balancing both precision and recall. In addition, M2SegNet leads
in the mPr metric, confirming its superior overall performance
on RSCDS tasks.

2) Computational Efficiency and Deployment Feasibility: As
shown in Table III, the M2SegNet has a computational cost of
246.31 GFLOPs and achieves an inference FPS of 10.96 on a
single GPU. M2SegNet achieves superior segmentation metrics
compared to existing methods while maintaining comparable
computational efficiency.

Furthermore, the model’s feasibility has been verified for
deployment on both CPU and edge hardware platforms. Ina CPU
environment, M2SegNet demonstrated comparable efficiency
to existing models while achieving superior performance. The
ReMamber encountered failures in CPU environments because
of its Vmamba architecture. On the NVIDIA Jetson Xavier
NX platform, empirical evaluations indicated that M2SegNet
achieved an inference FPS of 1.33, comparable to the 1.42
FPS of the ReLLA model. With efficiency comparable to ReLLA,
M2SegNet achieves superior performance. Notably, low com-
putational efficiency remains a common challenge in current
methods. Although M2SegNet can be deployed on edge devices,
achieving real-time performance still requires further optimiza-
tion. A lightweight architecture can be a promising direction for
future research to balance accuracy and inference speed on edge
devices.

D. Ablation Study

1) Different Backbones: As shown in Table IV, this section
conducted an in-depth analysis of the M2SegNet framework
originally using Bert and Swin-T as text and image encoders
through three distinct encoder replacement strategies as follows.

1) Replace both text and image encoders with pretrained

multimodal encoders of ResNet-based CLIP and ViT-
based CLIP, i.e., CLIP (RN50) and CLIP (ViT16), since
CLIP is a SOTA multimodal model renowned for its
strong alignment between textual and visual features [28].

2) Only substitute the original Swin-T with alternative image

encoders, such as ResNet and ViT.

3) Only substitute the original Bert with other text encoders,

such as T5 [29] and Roberta [30].

Authorized licensed use limited to: Southeast University. Downloaded on June 25,2025 at 09:30:45 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS
TABLE Il
COMPARISON OF SEGMENTATION METRICS (%) ON RSCDS TAsk BETWEEN SOTA MODELS AND M2SEGNET IN NATURAL SCENES
Method Publication year  gloU cloU  Recall Precision F1_Score mPr GFLOPs FPS Params  FPScpy
ReSTR [23] 2022 8.73 42.36 11.1 18.2 13.79 9.32 248.56 21.86  129.7M 0.74
LAVT [24] 2022 39.88  65.38  50.48 56.27 52.99 43.63 160.11 18.85 225.6M 1.11
PolyFormer [25] 2023 11.99 2958  17.35 18.26 17.79 8.83 175.34 15.32  309.7"M 1.34
ReLA [11] 2023 51.37 7145  67.06 71.31 71.26 55.53 225.05 12.04  223.9M 0.69
CARIS [26] 2023 5522 7239 6222 67.77 64.89 54.41 249.63 11.97  226.5M 0.66
ReMamber [27] 2024 57.15  74.87  69.13 67.9 66.69 57.8 501.31 10.04  254.5M -
M2SegNet - 59.21 7557 67.51 72.81 69.46 58.55 246.31 10.96  260.0M 0.61
TABLE IV TABLE V
RESULTS OF DIFFERENT BACKBONES RESULTS OF SEGMENTATION WITH VARYING TEXT COMPLEXITY
Method gloU  cloU  Recall Precision FIl_Score mPr Dataset gloU cloU Recall ~ Precision FI_Score mPr
M2SegNet 59.21 7557 6751 72.81 69.46 58.55 Template 59.21 7557 67.51 72.81 69.46 58.55
CLIP (RN50) 45.12 67.43 56.13 61.01 58.47 46.45 LLM 57.53 81.28 71.54 67.68 67.84 59.31
CLIP (ViT16) 5092 72.06 62.83 64.11 63.46 52.40 Template* 6033  76.03 69.38 73.63 71.08 59.37
ResNet 37.83 6246 5059 53.87 52.46 39.46 LLM* 6257 7641 7339  75.90 74.62 63.57
ViT 3826 62.67 S5l44 54.27 52.82 39.52 “*” indicates that the datasets constructed with extended attributes.
TS 5451 7539 67.41 65.27 66.32 56.09
Roberta 5751  77.23  70.08 67.76 68.90 59.15
Bert(large) 6026 7527 69.87  71.61 70.45 59.59 TABLE VI

Experimental results show that while the CLIP-based model
is competitive, it underperforms proposed M2SegNet across all
evaluation metrics. The poor performance of CLIP is likely
due to its lack of multiscale features, which conflicts with the
model’s multiscale architectural components, causing perfor-
mance degradation. While pretrained multimodal models typi-
cally exhibit strong performance, misalignment in design would
significantly compromise their effectiveness.

Only replacing the image encoder with ResNet or ViT led to
performance degradation. By comparison, replacing both text
and image encoders with pretrained multimodal encoders of
ResNet-based CLIP and ViT-based CLIP can achieve higher
performances. This observation demonstrates that the pretrained
CLIP model improves modality alignment, thereby enhancing
segmentation performance.

Specifically, only replacing the text encoder with T5 resulted
in a minor performance decline. Larger scale text encoders, such
as Bert(large) and Roberta, have demonstrated enhancements in
specific metrics. This improvement implies their latent capacity
for optimizing overall performance.

Notably, the model exhibits greater sensitivity to image en-
coder than text encoder alterations, with weaker image encoders
drastically reducing performance. In addition, advanced text
encoders help elevate the model’s performance ceiling.

2) Text Complexity: This section explores the impact of tex-
tual complexity on segmentation performance. Given the inher-
ent semantic singularity limitation of template-based text con-
struction, textual complexity is enhanced along two dimensions:
1) incorporating extended multidimensional defect attributes
besides the original four core attributes, including geometric
topology (angular relationships between defects and busbars)
and the position relative to the edge (defect located at the edge
or center regions) and 2) using the large language model (LLM)
to generate sophisticated referring texts based on diverse defect
attributes, expanding the linguistic diversity.

REsuLTs oOF MMF AND MPG ABLATION EXPERIMENTS

Method gloU  cloU  Recall Precision F1_Score mPr

Baseline 54.06 71.86 6458  66.80 64.79 53.37
+MMF 57.86 7452 6749  70.09 68.39 57.09
+MPG 58.74 7485 6732  69.79 68.33 58.07
+MMF+MPG 59.21 7557 67.51 72.81 69.46 58.55

Table V compares the template-based and LLM-based meth-
ods using both core and extended attributes. Comparing the
datasets constructed with core attributes, the LLM-based method
outperforms the template-based method on some metrics, i.e.,
cloU, recall, and mPr. When applied to datasets incorporating
extended attributes, which are marked with “*.” the LLM-based
approach achieves superior performance across all metrics.
These results indicate that complex and diverse texts fully ex-
ploit the potential of the text encoder, with enriched linguistic
diversity contributing to improved performance. During train-
ing, a broader range of rich and varied referring texts signif-
icantly enhances the text encoder’s ability to process diverse
inputs. Notably, despite its advantage in linguistic diversity, the
LLM-based approach requires significantly more computational
resources to generate texts compared to the template-based
method.

3) MMF and MPG: The proposed model primarily consists
of an image encoder, a text encoder, an MMF module, a multi-
granularity perceptual grouping (MPG) module, and a TGD.
This section evaluates a baseline model consisting of the image
encoder, text encoder, and TGD, while further validating the
contributions of the MMF and MPG modules to the final defect
detection performance. The experimental results are shown in
Table VI, with the image and text encoders implemented using
the same network structure as LAVT.

As shown in Table VI, the model’s segmentation performance
improves significantly when either the MMF module or the MPG
module is introduced individually, demonstrating the effective-
ness of both modules. When both MMF and MPG are introduced
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EL Image ReSTR LAVT

(@)

Referring Text: All not intersected with busbar defects in the EL image
(b)

Referring Text: All Crack defects in the EL image
©

ReLA

CARIS ReMamber Our_model

Referring Text: The Isolated type Crack defect not connected to busbar with miniature size in EL image

Q)

Referring Text: The tiny defects shows in the EL image

Fig. 6.

TABLE VII
RESULTS OF QUANTITATIVE ABLATION EXPERIMENTS IN MPG WITH
LEARNABLE CATEGORY QUERIES

Categories  gloU  cloU  Recall Precision FI_Score mPr
,5,2) 56.20 7493 6349 70.42 66.19 55.26
(2,2,2) 56.63 7456  63.98 70.51 66.63 55.71
(5,5.5) 5829 7534  66.82 70.92 68.48 57.60
9,9,9) 5878 7644 6691 71.31 69.03 58.03
(2,5,9) 59.21 7557 6751 72.81 69.46 58.55

simultaneously, all metrics reach the highest values. This result
confirms that the proposed MMF and MPG modules work
synergistically to enhance the model’s segmentation accuracy
and robustness.

4) Number of Learnable Grouping Queries in MPG: In the
MPG module, inspired by positioning characteristics of human
vision, the number of learnable grouping queries is designed
to go from fewer to more, progressing from coarse to fine. For
deep features that capture global information, only two grouping
classes are used to distinguish foreground and background. As
features become more detailed, mid-level features are divided
into five classes, adding three main defect categories. At the
shallowest level, the number of classes increases to nine, cover-
ing seven specific defect types. Thus, the final category settings
across three feature scales are (2, 5, 9).

To investigate the impact of this parameter on performance,
ablation experiments were performed by varying the number of
grouping queries in the MPG module. Tests were carried out on

Visualization of the segmentation effect of each model on RSCDS task.

configurations with a fine-to-coarse manner, such as (9, 5, 2), as
well as configurations with uniform category numbers, such as
2,2,2),(5,5,5),and (9,9, 9). As demonstrated in Table VII, the
(2, 5, 9) configuration yielded the highest performance across
all metrics.

E. Visualization and Analysis

In this study, the segmentation results on the proposed dataset
were visualized to enable a more intuitive comparison across dif-
ferent models, including the proposed M2SegNet, ReSTR [23],
LAVT [24], PolyFormer [25], ReLA [11], CARIS [11], and
ReMamber [27], as illustrated in Fig. 6. In Fig. 6, (a) and (b)
depict coarse-grained targets, (c) and (d) depict fine-grained
targets, and (e) corresponds to no-target samples. It can be ob-
served that ReSTR struggles to effectively detect defects. LAVT
performs poorly on coarse-grained targets and exhibits missed
detections, particularly in Fig. 6(a), (b), and (d). CARIS and
ReMamber perform well in detecting defects under fine-grained
semantics and can effectively detect corresponding defects based
on the referring text. However, their segmentation performance
on no-target and coarse-grained targets is suboptimal, such as
missed detections in Fig. 6(a), (b), and (d), and redundant outputs
in Fig. 6(e). Although ReL.A is optimized for no-target samples,
it still fails to segment all targets effectively for coarse-grained
scenarios [as seen in Fig. 6(a), (b), and (d)]. From the visualiza-
tion results, it is evident that the M2SegNet model achieves su-
perior defect segmentation performance across coarse-grained,
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Thermal Hotspot

Prediction

Referring Text: Cell with hotspot defect in thermal
imaging

/ of

Referring Text: Hotspot defect area in the PV panel

VI. CONCLUSION

In response to the personalized maintenance needs of current
PV power plants, the RSCDS task is proposed and a multimodal,
multigranularity dataset Ref-EL-Defect is constructed for this
task. A novel referring defect segmentation model M2SegNet is

10
Magnetic Tile GT Prediction Multi-Surface GT Prediction
Defect
Referring Text: Break defect identified in the sample Referring Text: Surface defects in tile material.
’ . l . .
Referring Text: The defect is of Uneven type Referring Text: Breaking patterns in tile material.
Fig. 7. Visualization of the segmentation effect of defects in other domains and imaging modalities.
TABLE VIII
QUANTITATIVE RESULTS ON OTHER DOMAINS
Dataset gloU  cloU  Recall Precision F1_Score mPr
MT defect 79.28 8436 83.33 86.28 85.92 80.92
MS defect 80.11 78.73 7275 86.41 86.19 81.44
TI defect 88.13  89.33  93.09 93.23 93.18 91.99

fine-grained, and no-target scenarios, delivering more accurate
defect segmentation.

F. Generalization to Defects on Other Domains

To evaluate the generalization capability of M2SegNet, this
section conducts experiments on industrial surface defect and
thermography-based PV hot spot segmentation tasks. Based on
the magnetic tile defect (MT defect, 457 images) [31], multisur-
face defect (MS defect, 2672 images) [32], and PV thermogra-
phy imaging defect (TI defect, 2063 images) datasets, referring
texts were generated by the multimodal LLM to construct three
multimodal datasets. The training and test sets were split at an
8:2 ratio.

As shown in Table VIII, M2SegNet consistently achieves
high performance across diverse datasets. These results highlight
M2SegNet’s reliable generalization capabilities across various
defect types and imaging modalities, ensuring robust segmenta-
tion in real-world scenarios with diverse data.

Fig. 7 further provides visualization of segmentation out-
comes. For the MT dataset, the model accurately segments
defects when the referring text aligns with image content and
maintains stability on defect-free samples. However, when
misalignment occurs [e.g., sample (b) in the “MT” column
where the text describes a nonexistent “uneven” defect], the
model predicts the actual “break™ defect instead of generating
blank masks. This phenomenon likely stems from the lim-
ited size of the dataset, which restricts the transformer-based
M2SegNet’s ability to effectively align multimodal information.
On the larger MS defect dataset, the issue of misalignment
observed in the MT dataset did not occur, further supporting
the hypothesis that dataset size plays a critical role in model
performance.

also designed for this task. Through the carefully crafted MMF
and MPG modules, M2SegNet effectively processes multimodal
and multigranularity information, significantly improving the
accuracy and efficiency of RSCDS. Compared to current RES
models in natural scenes, our model achieves superior perfor-
mance in the RSCDS task. The proposed RSCDS task has the
potential to greatly expand the application of deep learning in the
maintenance processes of PV power plants, effectively enabling
the personalized segmentation of defects in solar cells.

Future research could focus on developing lightweight ar-
chitectures to improve efficiency on edge devices. Furthermore,
employing advanced fusion strategies to integrate multiple imag-
ing modalities, such as EL and thermal imaging, could further
enhance defect segmentation performance.
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